1SH1 image
Entry Detail
PDB ID:
1SH1
Keywords:
Title:
SOLUTION STRUCTURE OF NEUROTOXIN I FROM THE SEA ANEMONE STICHODACTYLA HELIANTHUS. A NUCLEAR MAGNETIC RESONANCE, DISTANCE GEOMETRY AND RESTRAINED MOLECULAR DYNAMICS STUDY
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
1990-05-03
Release Date:
1991-10-15
Method Details:
Experimental Method:
Conformers Submitted:
1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:NEUROTOXIN I
Chain IDs:A
Chain Length:48
Number of Molecules:1
Biological Source:Stichodactyla helianthus
Ligand Molecules
Primary Citation
Solution structure of neurotoxin I from the sea anemone Stichodactyla helianthus. A nuclear magnetic resonance, distance geometry, and restrained molecular dynamics study.
J.Biol.Chem. 265 13016 13028 (1990)
PMID: 1973932

Abstact

The three-dimensional structure of the sea anemone polypeptide Stichodactyla helianthus neurotoxin I in aqueous solution has been determined using distance geometry and restrained molecular dynamics simulations based on NMR data acquired at 500 MHz. A set of 470 nuclear Overhauser enhancement values was measured, of which 216 were used as distance restraints in the structure determination along with 15 dihedral angles derived from coupling constants. After restrained molecular dynamics refinement, the eight structures that best fit the input data form a closely related family. They describe a structure that consists of a core of twisted, four-stranded, antiparallel beta-sheet encompassing residues 1-3, 19-24, 29-34, and 40-47, joined by three loops, two of which are well defined by the NMR data. The third loop, encompassing residues 7-16, is poorly defined by the data and is assumed to undergo conformational averaging in solution. Pairwise root mean square displacement values for the backbone heavy atoms of the eight best structures are 1.3 +/- 0.2A when the poorly defined loop is excluded and 3.6 +/- 1.0A for all backbone atoms. Refinement using restrained molecular dynamics improved the quality of the structures generated by distance geometry calculations with respect to the number of nuclear Overhauser enhancements violated, the size of the total distance violations and the total potential energies of the structures. The family of structures for S. heliathus neurotoxin I is compared with structures of related sea anemone proteins that also bind to the voltage-gated sodium channel.

Legend

Protein

Chemical

Disease

Primary Citation of related structures