1RCL image
Deposition Date 1994-08-08
Release Date 1994-11-30
Last Version Date 2024-11-06
Entry Detail
PDB ID:
1RCL
Title:
THE THREE DIMENSIONAL STRUCTURE OF GUANINE-SPECIFIC RIBONUCLEASE F1 IN SOLUTION DETERMINED BY NMR SPECTROSCOPY AND DISTANCE GEOMETRY
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Conformers Submitted:
1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:RIBONUCLEASE F1
Chain IDs:A
Chain Length:106
Number of Molecules:1
Biological Source:Gibberella fujikuroi
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
PCA A GLN PYROGLUTAMIC ACID
Ligand Molecules
Primary Citation
The three-dimensional structure of guanine-specific ribonuclease F1 in solution determined by NMR spectroscopy and distance geometry.
Eur.J.Biochem. 208 41 51 (1992)
PMID: 1511688 DOI: 10.1111/j.1432-1033.1992.tb17157.x

Abstact

Two-dimensional 1H-NMR studies have been performed on ribonuclease F1 (RNase F1), which contains 106 amino acid residues. Sequence-specific resonance assignments were accomplished for the backbone protons of 99 amino acid residues and for most of their side-chain protons. The three-dimensional structures were constructed on the basis of 820 interproton-distance restraints derived from NOE, 64 distance restraints for 32 hydrogen bonds and 33 phi torsion-angle restraints. A total of 40 structures were obtained by distance geometry and simulated-annealing calculations. The average root-mean-square deviation (residues 1-106) between the 40 converged structures and the mean structure obtained by averaging their coordinates was 0.116 +/- 0.018 nm for the backbone atoms and 0.182 +/- 0.015 nm for all atoms including the hydrogen atoms. RNase F1 was determined to be an alpha/beta-type protein. A well-defined structure constitutes the core region, which consists of a small N-terminal beta-sheet (beta 1, beta 2) and a central five-stranded beta-sheet (beta 3-beta 7) packed on a long helix. The structure of RNase F1 has been compared with that of RNase T1, which was determined by X-ray crystallography. Both belong to the same family of microbial ribonucleases. The polypeptide backbone fold of RNase F1 is basically identical to that of RNase T1. The conformation-dependent chemical shifts of the C alpha protons are well conserved between RNase F1 and RNase T1. The residues implicated in catalysis are all located on the central beta-sheet in a geometry similar to that of RNase T1.

Legend

Protein

Chemical

Disease

Primary Citation of related structures