1R2K image
Deposition Date 2003-09-28
Release Date 2004-06-01
Last Version Date 2024-11-13
Entry Detail
PDB ID:
1R2K
Title:
Crystal structure of MoaB from Escherichia coli
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.10 Å
R-Value Free:
0.25
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 3 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Molybdenum cofactor biosynthesis protein B
Chain IDs:A (auth: B), B (auth: A)
Chain Length:169
Number of Molecules:2
Biological Source:Escherichia coli
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Ligand Molecules
Primary Citation
Structure of the molybdenum-cofactor biosynthesis protein MoaB of Escherichia coli.
Acta Crystallogr.,Sect.D 60 1068 1075 (2004)
PMID: 15159566 DOI: 10.1107/S0907444904007164

Abstact

The moaABC operon of Escherichia coli is involved in early steps of the biosynthesis of the molybdenum-binding cofactor molybdopterin, but the precise functions of the cognate proteins are not known. The crystal structure of the MoaB protein from E. coli was determined by multiple anomalous dispersion at 2.1 angstroms A resolution and refined to an R factor of 20.4% (Rfree = 25.0%). The protein is a 32-symmetric hexamer, with the monomers consisting of a central beta-sheet flanked by helices on both sides. The overall fold of the monomer is similar to those of the MogA protein of E. coli, the G-domains of rat and human gephyrin and the G-domains of Cnx1 protein from A. thaliana, all of which are involved in the insertion of an unknown molybdenum species into molybdopterin to form the molybdenum cofactor. Furthermore, the MoaB protein shows significant sequence similarity to the cinnamon protein from Drosophila melanogaster. In addition to other functions, all these proteins are involved in the biosynthesis of the molybdenum cofactor and have been shown to bind molybdopterin. The close structural homology to MogA and the gephyrin and Cnx1 domains suggests that MoaB may bind a hitherto unidentified pterin compound, possibly an intermediate in molybdopterin biosynthesis.

Legend

Protein

Chemical

Disease

Primary Citation of related structures