1QQL image
Deposition Date 1999-06-07
Release Date 2000-01-14
Last Version Date 2024-10-02
Entry Detail
PDB ID:
1QQL
Title:
THE CRYSTAL STRUCTURE OF FIBROBLAST GROWTH FACTOR 7/1 CHIMERA
Biological Source:
Source Organism:
Rattus norvegicus (Taxon ID: 10116)
Homo sapiens (Taxon ID: 9606)
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.32
R-Value Work:
0.23
R-Value Observed:
0.24
Space Group:
P 64 2 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Fibroblast growth factor 7, Fibroblast growth factor 1 chimera
Chain IDs:A
Chain Length:140
Number of Molecules:1
Biological Source:Rattus norvegicus, Homo sapiens
Primary Citation

Abstact

Stromal cell-derived FGF-7 binds and activates only the resident FGFR2IIIb in epithelial cells while FGF-1 and FGF-2 exhibit a broader interaction with multiple isoforms of FGFR. Here we report the structure of FGF-7 that has been solved to 3.1 A resolution by molecular replacement with the structure of a dual function chimera of FGF-7 and FGF-1 (FGF-7/1) which was resolved to 2.3 A. Comparison of the FGF-7 structure to that of FGF-1 and FGF-2 revealed the strongly conserved Calpha backbone among the three FGF polypeptides and the surface hydrophobic patch that forms the primary receptor-binding domain. In contrast, a decrease and dispersion of the positive surface charge density characterized the heparin-binding domain of FGF-7 defined by homology to that of FGF-1 and FGF-2 in complexes with heparin. A simple heparin hexasaccharide that cocrystallized with FGF-1 and FGF-2 and protected both against protease in solution failed to exhibit the same properties with FGF-7. In contrast to FGF-1 and FGF-2, protection of FGF-7 was enhanced by heparin oligosaccharides of increased length with those exhibiting a 3-O-sulfate being the most effective. Protection of FGF-7 required interaction with specifically the fraction of crude heparin retained on antithrombin affinity columns. Conversely, heparin enriched by affinity for immobilized FGF-7 exhibited anti-factor Xa activity similar to that purified on an antithrombin affinity matrix. In contrast, an FGF-1 affinity matrix enriched the fraction of crude heparin with low anti-factor Xa activity. The results provide a structural basis to suggest that the unique FGF-7 heparin-binding (HB) domain underlies a specific restriction in respect to composition and length of the heparan sulfate motif that may impact specificity of localization, stability, and trafficking of FGF-7 in the microenvironment, and formation and activation of the FGFR2IIIb kinase signaling complex in epithelial cells.

Legend

Protein

Chemical

Disease

Primary Citation of related structures