1QOS image
Entry Detail
PDB ID:
1QOS
Keywords:
Title:
lectin UEA-II complexed with chitobiose
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
1999-11-16
Release Date:
2000-02-07
Method Details:
Experimental Method:
Resolution:
2.95 Å
R-Value Free:
0.22
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 31 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:CHITIN BINDING LECTIN, UEA-II
Chain IDs:A, B
Chain Length:242
Number of Molecules:2
Biological Source:ULEX EUROPAEUS
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
SER A SER GLYCOSYLATION SITE
Primary Citation
Structural Basis of Carbohydrate Recognition by Lectin II from Ulex Europaeus, a Protein with a Promiscuous Carbohydrate Binding Site
J.Mol.Biol. 301 987 ? (2000)
PMID: 10966800 DOI: 10.1006/JMBI.2000.4016

Abstact

Protein-carbohydrate interactions are the language of choice for inter- cellular communication. The legume lectins form a large family of homologous proteins that exhibit a wide variety of carbohydrate specificities. The legume lectin family is therefore highly suitable as a model system to study the structural principles of protein-carbohydrate recognition. Until now, structural data are only available for two specificity families: Man/Glc and Gal/GalNAc. No structural data are available for any of the fucose or chitobiose specific lectins. The crystal structure of Ulex europaeus (UEA-II) is the first of a legume lectin belonging to the chitobiose specificity group. The complexes with N-acetylglucosamine, galactose and fucosylgalactose show a promiscuous primary binding site capable of accommodating both N-acetylglucos amine or galactose in the primary binding site. The hydrogen bonding network in these complexes can be considered suboptimal, in agreement with the low affinities of these sugars. In the complexes with chitobiose, lactose and fucosyllactose this suboptimal hydrogen bonding network is compensated by extensive hydrophobic interactions in a Glc/GlcNAc binding subsite. UEA-II thus forms the first example of a legume lectin with a promiscuous binding site and illustrates the importance of hydrophobic interactions in protein-carbohydrate complexes. Together with other known legume lectin crystal structures, it shows how different specificities can be grafted upon a conserved structural framework.

Legend

Protein

Chemical

Disease

Primary Citation of related structures