1PR9 image
Deposition Date 2003-06-20
Release Date 2004-02-24
Last Version Date 2024-11-20
Entry Detail
PDB ID:
1PR9
Keywords:
Title:
Human L-Xylulose Reductase Holoenzyme
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.96 Å
R-Value Free:
0.22
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 21 21 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:L-XYLULOSE REDUCTASE
Gene (Uniprot):DCXR
Chain IDs:A, B
Chain Length:244
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Crystal structure of human L-xylulose reductase holoenzyme: probing the role of Asn107 with site-directed mutagenesis
Proteins 55 724 732 (2004)
PMID: 15103634 DOI: 10.1002/prot.20047

Abstact

L-Xylulose reductase (XR), an enzyme in the uronate cycle of glucose metabolism, belongs to the short-chain dehydrogenase/reductase (SDR) superfamily. Among the SDR enzymes, XR shows the highest sequence identity (67%) with mouse lung carbonyl reductase (MLCR), but the two enzymes show different substrate specificities. The crystal structure of human XR in complex with reduced nicotinamide adenine dinucleotide phosphate (NADPH) was determined at 1.96 A resolution by using the molecular replacement method and the structure of MLCR as the search model. Features unique to human XR include electrostatic interactions between the N-terminal residues of subunits related by the P-axis, termed according to SDR convention, and an interaction between the hydroxy group of Ser185 and the pyrophosphate of NADPH. Furthermore, identification of the residues lining the active site of XR (Cys138, Val143, His146, Trp191, and Met200) together with a model structure of XR in complex with L-xylulose, revealed structural differences with other members of the SDR family, which may account for the distinct substrate specificity of XR. The residues comprising a recently proposed catalytic tetrad in the SDR enzymes are conserved in human XR (Asn107, Ser136, Tyr149, and Lys153). To examine the role of Asn107 in the catalytic mechanism of human XR, mutant forms (N107D and N107L) were prepared. The two mutations increased K(m) for the substrate (>26-fold) and K(d) for NADPH (95-fold), but only the N107L mutation significantly decreased k(cat) value. These results suggest that Asn107 plays a critical role in coenzyme binding rather than in the catalytic mechanism.

Legend

Protein

Chemical

Disease

Primary Citation of related structures