1PO5 image
Deposition Date 2003-06-13
Release Date 2003-10-07
Last Version Date 2023-08-16
Entry Detail
PDB ID:
1PO5
Keywords:
Title:
Structure of mammalian cytochrome P450 2B4
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.60 Å
R-Value Free:
0.28
R-Value Observed:
0.21
Space Group:
C 2 2 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Cytochrome P450 2B4
Gene (Uniprot):CYP2B4
Mutations:E2A, G22K, H23K, P24T, K25S, A26S, H27K, R29K, P221S
Chain IDs:A
Chain Length:476
Number of Molecules:1
Biological Source:Oryctolagus cuniculus
Ligand Molecules
Primary Citation
An open conformation of mammalian cytochrome P450 2B4 at 1.6 A resolution
Proc.Natl.Acad.Sci.USA 100 13196 13201 (2003)
PMID: 14563924 DOI: 10.1073/pnas.2133986100

Abstact

The xenobiotic metabolizing cytochromes P450 (P450s) are among the most versatile biological catalysts known, but knowledge of the structural basis for their broad substrate specificity has been limited. P450 2B4 has been frequently used as an experimental model for biochemical and biophysical studies of these membrane proteins. A 1.6-A crystal structure of P450 2B4 reveals a large open cleft that extends from the protein surface directly to the heme iron between the alpha-helical and beta-sheet domains without perturbing the overall P450 fold. This cleft is primarily formed by helices B' to C and F to G. The conformation of these regions is dramatically different from that of the other structurally defined mammalian P450, 2C5/3LVdH, in which the F to G and B' to C regions encapsulate one side of the active site to produce a closed form of the enzyme. The open conformation of 2B4 is trapped by reversible formation of a homodimer in which the residues between helices F and G of one molecule partially fill the open cleft of a symmetry-related molecule, and an intermolecular coordinate bond occurs between H226 and the heme iron. This dimer is observed both in solution and in the crystal. Differences between the structures of 2C5 and 2B4 suggest that defined regions of xenobiotic metabolizing P450s may adopt a substantial range of energetically accessible conformations without perturbing the overall fold. This conformational flexibility is likely to facilitate substrate access, metabolic versatility, and product egress.

Legend

Protein

Chemical

Disease

Primary Citation of related structures