1PKW image
Entry Detail
PDB ID:
1PKW
Keywords:
Title:
Crystal structure of human glutathione transferase (GST) A1-1 in complex with glutathione
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2003-06-06
Release Date:
2004-06-22
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.20
R-Value Work:
0.15
R-Value Observed:
0.15
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Glutathione S-transferase A1
Chain IDs:A, B
Chain Length:222
Number of Molecules:2
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
CSO A CYS S-HYDROXYCYSTEINE
Primary Citation
New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix.
Acta Crystallogr.,Sect.D 62 197 207 (2006)
PMID: 16421451 DOI: 10.1107/S0907444905039296

Abstact

Human glutathione transferase A1-1 is a well studied enzyme, but despite a wealth of structural and biochemical data a number of aspects of its catalytic function are still poorly understood. Here, five new crystal structures of this enzyme are described that provide several insights. Firstly, the structure of a complex of the wild-type human enzyme with glutathione was determined for the first time at 2.0 angstroms resolution. This reveals that glutathione binds in the G site in a very similar fashion as the glutathione portion of substrate analogues in other structures and also that glutathione binding alone is sufficient to stabilize the C-terminal helix of the protein. Secondly, we have studied the complex with a decarboxylated glutathione conjugate that is known to dramatically decrease the activity of the enzyme. The T68E mutant of human glutathione transferase A1-1 recovers some of the activity that is lost with the decarboxylated glutathione, but our structures of this mutant show that none of the earlier explanations of this phenomenon are likely to be correct. Thirdly, and serendipitously, the apo structures also reveal the conformation of the crucial C-terminal region that is disordered in all previous apo structures. The C-terminal region can adopt an ordered helix-like structure even in the apo state, but shows a strong tendency to unwind. Different conformations of the C-terminal regions were observed in the apo states of the two monomers, which suggests that cooperativity could play a role in the activity of the enzyme.

Legend

Protein

Chemical

Disease

Primary Citation of related structures