1PIZ image
Deposition Date 2003-05-30
Release Date 2004-01-13
Last Version Date 2023-08-16
Entry Detail
PDB ID:
1PIZ
Keywords:
Title:
RIBONUCLEOTIDE REDUCTASE R2 D84E MUTANT SOAKED WITH FERROUS IONS AT NEUTRAL PH
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Ribonucleoside-diphosphate reductase 1 beta chain
Gene (Uniprot):nrdB
Mutagens:D84E
Chain IDs:A, B
Chain Length:375
Number of Molecules:2
Biological Source:Escherichia coli
Primary Citation
Variable coordination geometries at the diiron(II) active site of ribonucleotide reductase R2.
J.Am.Chem.Soc. 125 15822 15830 (2003)
PMID: 14677973 DOI: 10.1021/ja0370387

Abstact

The R2 subunit of Escherichia coli ribonucleotide reductase contains a dinuclear iron center that generates a catalytically essential stable tyrosyl radical by one electron oxidation of a nearby tyrosine residue. After acquisition of Fe(II) ions by the apo protein, the resulting diiron(II) center reacts with O(2) to initiate formation of the radical. Knowledge of the structure of the reactant diiron(II) form of R2 is a prerequisite for a detailed understanding of the O(2) activation mechanism. Whereas kinetic and spectroscopic studies of the reaction have generally been conducted at pH 7.6 with reactant produced by the addition of Fe(II) ions to the apo protein, the available crystal structures of diferrous R2 have been obtained by chemical or photoreduction of the oxidized diiron(III) protein at pH 5-6. To address this discrepancy, we have generated the diiron(II) states of wildtype R2 (R2-wt), R2-D84E, and R2-D84E/W48F by infusion of Fe(II) ions into crystals of the apo proteins at neutral pH. The structures of diferrous R2-wt and R2-D48E determined from these crystals reveal diiron(II) centers with active site geometries that differ significantly from those observed in either chemically or photoreduced crystals. Structures of R2-wt and R2-D48E/W48F determined at both neutral and low pH are very similar, suggesting that the differences are not due solely to pH effects. The structures of these "ferrous soaked" forms are more consistent with circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopic data and provide alternate starting points for consideration of possible O(2) activation mechanisms.

Legend

Protein

Chemical

Disease

Primary Citation of related structures