1O8M image
Deposition Date 2002-11-27
Release Date 2003-01-30
Last Version Date 2024-11-13
Entry Detail
PDB ID:
1O8M
Keywords:
Title:
Pectate Lyase C from Erwinia Chrysanthemi at pH 4.5 with no Ca2+ Added
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.21
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:PECTATE LYASE C
Gene (Uniprot):pelC
Chain IDs:A
Chain Length:353
Number of Molecules:1
Biological Source:ERWINIA CHRYSANTHEMI
Primary Citation
Characterization and Implications of Ca2+ Binding to Pectate Lyase C
J.Biol.Chem. 278 12271 12277 (2003)
PMID: 12540845 DOI: 10.1074/JBC.M209306200

Abstact

Ca(2+) is essential for in vitro activity of Erwinia chrysanthemi pectate lyase C (PelC). Crystallographic analyses of 11 PelC-Ca(2+) complexes, formed at pH 4.5, 9.5, and 11.2 under varying Ca(2+) concentrations, have been solved and refined at a resolution of 2.2 A. The Ca(2+) site represents a new motif for Ca(2+), consisting primarily of beta-turns and beta-strands. The principal differences between PelC and the PelC-Ca(2+) structures at all pH values are the side-chain conformations of Asp-129 and Glu-166 as well as the occupancies of four water molecules. According to calculations of pK(a) values, the presence of Ca(2+) and associated structural changes lower the pK(a) of Arg-218, the amino acid responsible for proton abstraction during catalysis. The Ca(2+) affinity for PelC is weak, as the K(d) was estimated to be 0.132 (+/-0.004) mm at pH 9.5, 1.09 (+/-0.29) mm at pH 11.2, and 5.84 (+/-0.41) mm at pH 4.5 from x-ray diffraction studies and 0.133 (+/-0.045) mm at pH 9.5 from intrinsic tryptophan fluorescence measurements. Given the pH dependence of Ca(2+) affinity, PelC activity at pH 4.5 has been reexamined. At saturating Ca(2+) concentrations, PelC activity increases 10-fold at pH 4.5 but is less than 1% of maximal activity at pH 9.5. Taken together, the studies suggest that the primary Ca(2+) ion in PelC has multiple functions.

Legend

Protein

Chemical

Disease

Primary Citation of related structures