1NKZ image
Deposition Date 2003-01-06
Release Date 2003-02-25
Last Version Date 2024-11-20
Entry Detail
PDB ID:
1NKZ
Title:
Crystal structure of LH2 B800-850 from Rps. acidophila at 2.0 Angstrom resolution
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.19
R-Value Work:
0.16
R-Value Observed:
0.17
Space Group:
H 3 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Light-harvesting protein B-800/850, alpha chain
Chain IDs:A, C, E
Chain Length:53
Number of Molecules:3
Biological Source:Rhodoblastus acidophilus
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Light-harvesting protein B-800/850, beta chain
Chain IDs:B, D, F
Chain Length:41
Number of Molecules:3
Biological Source:Rhodoblastus acidophilus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
CXM A MET N-CARBOXYMETHIONINE
Primary Citation
The structure and thermal motion of the B800-850 LH2 complex from Rps. acidophila at 2.0 A resolution and 100K : new structural features and functionally relevant motions.
J.Mol.Biol. 326 1523 1538 (2003)
PMID: 12595263 DOI: 10.1016/S0022-2836(03)00024-X

Abstact

The structure at 100K of integral membrane light-harvesting complex II (LH2) from Rhodopseudomonas acidophila strain 10050 has been refined to 2.0A resolution. The electron density has been significantly improved, compared to the 2.5A resolution map, by high resolution data, cryo-cooling and translation, libration, screw (TLS) refinement. The electron density reveals a second carotenoid molecule, the last five C-terminal residues of the alpha-chain and a carboxy modified alpha-Met1 which forms the ligand of the B800 bacteriochlorophyll. TLS refinement has enabled the characterisation of displacements between molecules in the complex. B850 bacteriochlorophyll molecules are arranged in a ring of 18 pigments composed of nine approximate dimers. These pigments are strongly coupled and at their equilibrium positions the excited state dipole interaction energies, within and between dimers, are approximately 370cm(-1) and 280cm(-1), respectively. This difference in coupling energy is similar in magnitude to changes in interaction energies arising from the pigment displacements described by TLS tensors. The displacements appear to be non-random in nature and appear to be designed to optimise the modulation of pigment energy interactions. This is the first time that LH2 pigment displacements have been quantified experimentally. The calculated energy changes indicate that there may be significant contributions to inter-pigment energy interactions from molecular displacements and these may be of importance to photosynthetic energy transfer.

Legend

Protein

Chemical

Disease

Primary Citation of related structures