1ND5 image
Deposition Date 2002-12-07
Release Date 2002-12-20
Last Version Date 2024-12-25
Entry Detail
PDB ID:
1ND5
Keywords:
Title:
Crystal Structures of Human Prostatic Acid Phosphatase in Complex with a Phosphate Ion and alpha-Benzylaminobenzylphosphonic Acid Update the Mechanistic Picture and Offer New Insights into Inhibitor Design
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Method Details:
Experimental Method:
Resolution:
2.90 Å
R-Value Free:
0.27
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:prostatic acid phosphatase
Gene (Uniprot):ACP3
Chain IDs:A, B, C, D
Chain Length:354
Number of Molecules:4
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Primary Citation
Crystal structures of human prostatic acid phosphatase in complex with a phosphate ion and alpha-benzylaminobenzylphosphonic acid update the mechanistic picture and offer new insights into inhibitor design
Biochemistry 42 383 389 (2003)
PMID: 12525165 DOI: 10.1021/bi0265067

Abstact

The X-ray crystal structure of human prostatic acid phosphatase (PAP) in complex with a phosphate ion has been determined at 2.4 A resolution. This structure offers a snapshot of the final intermediate in the catalytic mechanism and does not support the role of Asp 258 as a proton donor in catalysis. A total of eight hydrogen bonds serve to strongly bind the phosphate ion within the active site. Bound PEG molecules from the crystallization matrix have allowed the identification of a channel within the molecule that likely plays a role in molecular recognition and in macromolecular substrate selectivity. Additionally, the structure of PAP in complex with a phosphate derivative, alpha-benzylaminobenzylphosphonic acid, a potent inhibitor (IC(50) = 4 nM), has been determined to 2.9 A resolution. This structure gives new insight into the determinants of binding hydrophobic ligands within the active site and allows us to explain PAP's preference for aromatic substrates.

Legend

Protein

Chemical

Disease

Primary Citation of related structures