1MUL image
Deposition Date 2002-09-24
Release Date 2003-08-05
Last Version Date 2024-03-13
Entry Detail
PDB ID:
1MUL
Title:
Crystal structure of the E. coli HU alpha2 protein
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.26
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:DNA binding protein HU-alpha
Gene (Uniprot):hupA
Chain IDs:A
Chain Length:90
Number of Molecules:1
Biological Source:Escherichia coli
Primary Citation
Evidence of a Thermal Unfolding Dimeric Intermediate for the Escherichia coli Histone-like HU Proteins: Thermodynamics and Structure.
J.Mol.Biol. 331 101 121 (2003)
PMID: 12875839 DOI: 10.1016/S0022-2836(03)00725-3

Abstact

The Escherichia coli histone-like HU protein pool is composed of three dimeric forms: two homodimers, EcHUalpha(2) and EcHUbeta(2), and a heterodimer, EcHUalphabeta. The relative abundance of these dimeric forms varies during cell growth and in response to environmental changes, suggesting that each dimer plays different physiological roles. Here, differential scanning calorimetry and circular dichroism (CD) were used to study the thermal stability of the three E.coli HU dimers and show that each of them has its own thermodynamic signature. Unlike the other HU proteins studied so far, which melt through a single step (N(2)<-->2D), this present thermodynamic study shows that the three E.coli dimers melt according to a two-step mechanism (N(2)<-->I(2)<-->2D). The native dimer, N(2), melts partially into a dimeric intermediate, I(2), which in turn yields the unfolded monomers, D. In addition, the crystal structure of the EcHUalpha(2) dimer has been solved. Comparative thermodynamic and structural analysis between EcHUalpha(2) and the HU homodimer from Bacillus stearothermophilus suggests that the E.coli dimer is constituted by two subdomains of different energetic properties. The CD study indicates that the intermediate, I(2), corresponds to an HU dimer having partly lost its alpha-helices. The partially unfolded dimer I(2) is unable to complex with high-affinity, single-stranded break-containing DNA. These structural, thermodynamic and functional results suggest that the N(2)<-->I(2) equilibrium plays a central role in the physiology of E.coli HU. The I(2) molecular species seems to be the EcHUbeta(2) preferential conformation, possibly related to its role in the E.coli cold-shock adaptation. Besides, I(2) might be required in E.coli for the HU chain exchange, which allows the heterodimer formation from homodimers.

Legend

Protein

Chemical

Disease

Primary Citation of related structures