1M4B image
Deposition Date 2002-07-02
Release Date 2002-07-31
Last Version Date 2024-11-20
Entry Detail
PDB ID:
1M4B
Keywords:
Title:
Crystal Structure of Human Interleukin-2 K43C Covalently Modified at C43 with 2-[2-(2-Cyclohexyl-2-guanidino-acetylamino)-acetylamino]-N-(3-mercapto-propyl)-propionamide
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.15 Å
R-Value Free:
0.28
R-Value Work:
0.24
R-Value Observed:
0.24
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:interleukin-2
Gene (Uniprot):IL2
Mutations:K43C
Chain IDs:A
Chain Length:133
Number of Molecules:1
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Binding of small molecules to an adaptive protein-protein interface
Proc.Natl.Acad.Sci.USA 100 1603 1608 (2003)
PMID: 12582206 DOI: 10.1073/pnas.252756299

Abstact

Understanding binding properties at protein-protein interfaces has been limited to structural and mutational analyses of natural binding partners or small peptides identified by phage display. Here, we present a high-resolution analysis of a nonpeptidyl small molecule, previously discovered by medicinal chemistry [Tilley, J. W., et al. (1997) J. Am. Chem. Soc. 119, 7589-7590], which binds to the cytokine IL-2. The small molecule binds to the same site that binds the IL-2 alpha receptor and buries into a groove not seen in the free structure of IL-2. Comparison of the bound and several free structures shows this site to be composed of two subsites: one is rigid, and the other is highly adaptive. Thermodynamic data suggest the energy barriers between these conformations are low. The subsites were dissected by using a site-directed screening method called tethering, in which small fragments were captured by disulfide interchange with cysteines introduced into IL-2 around these subsites. X-ray structures with the tethered fragments show that the subsite-binding interactions are similar to those observed with the original small molecule. Moreover, the adaptive subsite tethered many more compounds than did the rigid one. Thus, the adaptive nature of a protein-protein interface provides sites for small molecules to bind and underscores the challenge of applying structure-based design strategies that cannot accurately predict a dynamic protein surface.

Legend

Protein

Chemical

Disease

Primary Citation of related structures