1LA1 image
Entry Detail
PDB ID:
1LA1
Keywords:
Title:
Gro-EL Fragment (Apical Domain) Comprising Residues 188-379
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2002-03-27
Release Date:
2002-04-03
Method Details:
Experimental Method:
Resolution:
2.06 Å
R-Value Free:
0.25
R-Value Work:
0.19
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:GroEL
Chain IDs:A
Chain Length:192
Number of Molecules:1
Biological Source:Escherichia coli
Primary Citation
Structural plasticity and noncovalent substrate binding in the GroEL apical domain. A study using electrospay ionization mass spectrometry and fluorescence binding studies.
J.Biol.Chem. 277 33115 33126 (2002)
PMID: 12065585 DOI: 10.1074/jbc.M203398200

Abstact

Advances in understanding how GroEL binds to non-native proteins are reported. Conformational flexibility in the GroEL apical domain, which could account for the variety of substrates that GroEL binds, is illustrated by comparison of several independent crystallographic structures of apical domain constructs that show conformational plasticity in helices H and I. Additionally, ESI-MS indicates that apical domain constructs have co-populated conformations at neutral pH. To assess the ability of different apical domain conformers to bind co-chaperone and substrate, model peptides corresponding to the mobile loop of GroES and to helix D from rhodanese were studied. Analysis of apical domain-peptide complexes by ESI-MS indicates that only the folded or partially folded apical domain conformations form complexes that survive gas phase conditions. Fluorescence binding studies show that the apical domain can fully bind both peptides independently. No competition for binding was observed, suggesting the peptides have distinct apical domain-binding sites. Blocking the GroES-apical domain-binding site in GroEL rendered the chaperonin inactive in binding GroES and in assisting the folding of denatured rhodanese, but still capable of binding non-native proteins, supporting the conclusion that GroES and substrate proteins have, at least partially, distinct binding sites even in the intact GroEL tetradecamer.

Legend

Protein

Chemical

Disease

Primary Citation of related structures