1L96 image
Deposition Date 1992-02-11
Release Date 1993-10-31
Last Version Date 2024-02-14
Entry Detail
PDB ID:
1L96
Title:
STRUCTURE OF A HINGE-BENDING BACTERIOPHAGE T4 LYSOZYME MUTANT, ILE3-> PRO
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Observed:
0.16
Space Group:
P 32 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:T4 LYSOZYME
Gene (Uniprot):E
Chain IDs:A
Chain Length:164
Number of Molecules:1
Biological Source:Enterobacteria phage T4
Primary Citation
Structure of a hinge-bending bacteriophage T4 lysozyme mutant, Ile3-->Pro.
J.Mol.Biol. 227 917 933 (1992)
PMID: 1404394 DOI: 10.1016/0022-2836(92)90231-8

Abstact

The mutant T4 phage lysozyme in which isoleucine 3 is replaced by proline (I3P) crystallizes in an orthorhombic form with two independent molecules in the asymmetric unit. Relative to wild-type lysozyme, which crystallizes in a trigonal form, the two I3P molecules undergo large hinge-bending displacements with the alignments of the amino-terminal and carboxy-terminal domains changed by 28.9 degrees and 32.9 degrees, respectively. The introduction of the mutation, together with the hinge-bending displacement, is associated with repacking of the side-chains of Phe4, Phe67 and Phe104. These aromatic residues are clustered close to the site of the mutation and are at the junction between the amino and carboxyl-terminal domains. As a result of this structural rearrangement the side-chain of Phe4 moves from a relatively solvent-exposed conformation to one that is largely buried. Mutant I3P also crystallizes in the same trigonal form as wild-type and, in this case, the observed structural changes are restricted to the immediate vicinity of the replacement. The main change is a shift of 0.3 to 0.5 A in the backbone of residues 1 to 5. The ability to crystallize I3P under similar conditions but in substantially different conformations suggests that the molecule undergoes large-scale hinge-bending displacements in solution. It is also likely that these conformational excursions are associated with repacking at the junction of the N-terminal and C-terminal domains. On the other hand, the analysis is complicated by possible effects of crystal packing. The different I3P crystal structures show substantial differences in the binding of solvent, both at the site of the Ile3-->Pro replacement and at other internal sites.

Legend

Protein

Chemical

Disease

Primary Citation of related structures