1K0V image
Deposition Date 2001-09-21
Release Date 2001-12-19
Last Version Date 2024-05-22
Entry Detail
PDB ID:
1K0V
Keywords:
Title:
Copper trafficking: the solution structure of Bacillus subtilis CopZ
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Conformers Calculated:
30
Conformers Submitted:
30
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:CopZ
Gene (Uniprot):copZ
Chain IDs:A
Chain Length:73
Number of Molecules:1
Biological Source:Bacillus subtilis
Ligand Molecules
Primary Citation
Copper trafficking: the solution structure of Bacillus subtilis CopZ.
Biochemistry 40 15660 15668 (2001)
PMID: 11747441 DOI: 10.1021/bi0112715

Abstact

A sequence with a high homology (39% residue identity) with that of the copper-transport CopZ protein from Enterococcus hirae and with the same MXCXXC metal-binding motif has been identified in the genome of Bacillus subtilis, and the corresponding protein has been expressed. The protein, constituted by 73 amino acids, does bind copper(I) under reducing conditions and fully folded in both copper-bound and copper-free forms under the present experimental conditions. The solution structure of the copper-bound form was determined through NMR spectroscopy on an 15N-labeled sample. A total of 1508 meaningful nuclear Overhauser effects, 38 dihedral phi angles, and 48 dihedral psi angles were used in the structural calculations, which lead to a family of 30 conformers with an average rmsd to the mean structure of 0.32 +/- 0.06 A for the backbone and of 0.85 +/- 0.07 A for the heavy atoms. NMR data on the apoprotein also show that, also in this form, the protein is in a folded state and essentially maintains the complete secondary structure. Some disorder is observed in the loop devoted to copper binding. These results are compared with those reported for CopZ from E. hirae whose structure is well-defined only in the apo form. The different behaviors of copper-loaded E. hirae and B. subtilis are tentatively accounted for on the basis of the presence of dithiothreitol used in the latter case, which would stabilize the monomeric form. The comparison is extended to other similar proteins, with particular attention to the copper-binding loop. The nature and the location of conserved residues around the metal-binding site are discussed with respect to their relevance for the metal-binding process. Proposals for the role of CopZ are also presented.

Legend

Protein

Chemical

Disease

Primary Citation of related structures