1JSV image
Deposition Date 2001-08-19
Release Date 2001-08-29
Last Version Date 2024-02-07
Entry Detail
PDB ID:
1JSV
Keywords:
Title:
The structure of cyclin-dependent kinase 2 (CDK2) in complex with 4-[(6-amino-4-pyrimidinyl)amino]benzenesulfonamide
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.96 Å
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:CELL DIVISION PROTEIN KINASE 2
Gene (Uniprot):CDK2
Chain IDs:A
Chain Length:298
Number of Molecules:1
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
The cyclin-dependent kinases cdk2 and cdk5 act by a random, anticooperative kinetic mechanism
J.Biol.Chem. 276 48292 48299 (2001)
PMID: 11604388

Abstact

cdk2.cyclin E and cdk5.p25 are two members of the cyclin-dependent kinase family that are potential therapeutic targets for oncology and Alzheimer's disease, respectively. In this study we have investigated the mechanism for these enzymes. Kinases catalyze the transfer of phosphate from ATP to a protein acceptor, thus utilizing two substrates, ATP and the target protein. For a two-substrate reaction, possible kinetic mechanisms include: ping-pong, sequential random, or sequential ordered. To determine the kinetic mechanism of cdk2.GST-cyclin E and cdk5.GST-p25, kinase activity was measured in experiments in which concentrations of peptide and ATP substrates were varied in the presence of dead-end inhibitors. A peptide identical to the peptide substrate, but with a substitution of valine for the phosphoacceptor threonine, competed with substrate with a K(i) value of 0.6 mm. An aminopyrimidine, PNU 112455A, was identified in a screen for inhibitors of cdk2. Nonlinear least squares and Lineweaver-Burk analyses demonstrated that the inhibitor PNU 112455A was competitive with ATP with a K(i) value of 2 microm. In addition, a co-crystal of PNU 112455A with cdk2 showed that the inhibitor binds in the ATP binding pocket of the enzyme. Analysis of the inhibitor data demonstrated that both kinases use a sequential random mechanism, in which either ATP or peptide may bind first to the enzyme active site. For both kinases, the binding of the second substrate was shown to be anticooperative, in that the binding of the first substrate decreases the affinity of the second substrate. For cdk2.GST-cyclin E the kinetic parameters were determined to be K(m, ATP) = 3.6 +/- 1.0 microm, K(m, peptide) = 4.6 +/- 1.4 microm, and the anticooperativity factor, alpha = 130 +/- 44. For cdk5.GST-p25, the K(m, ATP) = 3.2 +/- 0.7 microm, K(m, peptide) = 1.6 +/- 0.3 microm, and alpha = 7.2 +/- 1.8.

Legend

Protein

Chemical

Disease

Primary Citation of related structures