1JGE image
Deposition Date 2001-06-25
Release Date 2002-10-30
Last Version Date 2024-10-30
Entry Detail
PDB ID:
1JGE
Keywords:
Title:
HLA-B*2705 bound to nona-peptide m9
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.10 Å
R-Value Free:
0.25
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, B-27 B*2705 ALPHA CHAIN
Chain IDs:A
Chain Length:276
Number of Molecules:1
Biological Source:Homo sapiens
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:BETA-2-MICROGLOBULIN
Gene (Uniprot):B2M
Chain IDs:B
Chain Length:100
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:peptide m9
Chain IDs:C
Chain Length:9
Number of Molecules:1
Biological Source:
Primary Citation
HLA-B27 subtypes differentially associated with disease exhibit subtle structural alterations
J.Biol.Chem. 277 47844 47853 (2002)
PMID: 12244049 DOI: 10.1074/jbc.M206392200

Abstact

The reasons for the association of the human major histocompatibility complex protein HLA-B27 with spondyloarthropathies are unknown. To uncover the underlying molecular causes, we determined the crystal structures of the disease-associated B*2705 and the nonassociated B*2709 subtypes complexed with the same nonapeptide (GRFAAAIAK). Both differ in only one residue (Asp(116) and His(116), respectively) in the F-pocket that accommodates the peptide C terminus. Several different effects of the Asp(116) --> His replacement are observed. The bulkier His(116) induces a movement of peptide C-terminal pLys(9), allowing the formation of a novel salt bridge to Asp(77), whereas the salt bridge between pLys(9) and Asp(116) is converted into a hydrogen bond with His(116). His(116) but not Asp(116) adopts two alternative conformations, one of which leads to breakage of hydrogen bonds. Water molecules near residue 116 differ with regard to number, position, and contacts made. Furthermore, F-pocket atoms exhibit higher B-factors in B*2709 than in B*2705, indicating an increased flexibility of the entire region in the former subtype. These changes induce subtle peptide conformational alterations that may be responsible for the immunobiological differences between these HLA-B27 subtypes.

Legend

Protein

Chemical

Disease

Primary Citation of related structures