1J4Q image
Deposition Date 2001-10-22
Release Date 2001-12-05
Last Version Date 2024-10-16
Entry Detail
PDB ID:
1J4Q
Title:
NMR STRUCTURE OF THE FHA1 DOMAIN OF RAD53 IN COMPLEX WITH A RAD9-DERIVED PHOSPHOTHREONINE (AT T192) PEPTIDE
Biological Source:
Source Organism:
Saccharomyces cerevisiae (Taxon ID: 4932)
(Taxon ID: )
Method Details:
Experimental Method:
Conformers Submitted:
1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:PROTEIN KINASE SPK1
Gene (Uniprot):RAD53
Chain IDs:A
Chain Length:151
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA REPAIR PROTEIN RAD9
Gene (Uniprot):RAD9
Chain IDs:B
Chain Length:13
Number of Molecules:1
Biological Source:
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
TPO B THR PHOSPHOTHREONINE
Ligand Molecules
Primary Citation
Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53.
J.Mol.Biol. 314 563 575 (2001)
PMID: 11846567 DOI: 10.1006/jmbi.2001.5140

Abstact

Rad53, a yeast checkpoint protein involved in regulating the repair of DNA damage, contains two forkhead-associated domains, FHA1 and FHA2. Previous combinatorial library screening has shown that FHA1 strongly selects peptides containing a pTXXD motif. Subsequent location of this motif within the sequence of Rad9, the target protein, coupled with spectroscopic analysis has led to identification of a tight binding sequence that is likely the binding site of FHA1: (188)SLEV(pT)EADATFVQ(200). We present solution structures of FHA1 in complex with this pT-peptide and with another Rad9-derived pT-peptide that has ca 30-fold lower affinity, (148)KKMTFQ(pT)PTDPLE(160). Both complexes showed intermolecular NOEs predominantly between three peptide residues (pT, +1, and +2 residues) and five FHA1 residues (S82, R83, S85, T106, and N107). Furthermore, the following interactions were implicated on the basis of chemical shift perturbations and structural analysis: the phosphate group of the pT residue with the side-chain amide group of N86 and the guanidino group of R70, and the carboxylate group of Asp (at the +3 position) with the guanidino group of R83. The generated structures revealed a similar binding mode adopted by these two peptides, suggesting that pT and the +3 residue Asp are the major contributors to binding affinity and specificity, while +1 and +2 residues could provide additional fine-tuning. It was also shown that FHA1 does not bind to the corresponding pS-peptides or a related pY-peptide. We suggest that differentiation between pT and pS-peptides by FHA1 can be attributed to hydrophobic interactions between the methyl group of the pT residue and the aliphatic protons of R83, S85, and T106 from FHA1.

Legend

Protein

Chemical

Disease

Primary Citation of related structures