1J1Y image
Deposition Date 2002-12-24
Release Date 2004-02-17
Last Version Date 2023-12-27
Entry Detail
PDB ID:
1J1Y
Keywords:
Title:
Crystal Structure of PaaI from Thermus thermophilus HB8
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.70 Å
R-Value Free:
0.19
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 43 2 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:PaaI protein
Gene (Uniprot):TTHA0965
Chain IDs:A, B
Chain Length:136
Number of Molecules:2
Biological Source:Thermus thermophilus
Primary Citation
A Novel Induced-fit Reaction Mechanism of Asymmetric Hot Dog Thioesterase PaaI
J.Mol.Biol. 352 212 228 (2005)
PMID: 16061252 DOI: 10.1016/j.jmb.2005.07.008

Abstact

Hot dog fold proteins sharing the characteristic "hot dog" fold are known to involve certain coenzyme A binding enzymes with various oligomeric states. In order to elucidate the oligomerization-function relationship of the hot dog fold proteins, crystal structures of the phenylacetate degradation protein PaaI from Thermus thermophilus HB8 (TtPaaI), a tetrameric acyl-CoA thioesterase with the hot dog fold, have been determined and compared with those of other family members. In the liganded crystal forms with coenzyme A derivatives, only two of four intersubunit catalytic pockets of the TtPaaI tetramer are occupied by the ligands. A detailed structural comparison between several liganded and unliganded forms reveals that a subtle rigid-body rearrangement of subunits within 2 degrees upon binding of the first two ligand molecules can induce a strict negative cooperativity to prevent further binding at the remaining two pockets, indicating that the so-called "half-of-the-sites reactivity" of oligomeric enzymes is visualized for the first time. Considering kinetic and mutational analyses together, a possible reaction mechanism of TtPaaI is proposed; one tetramer binds only two acyl-CoA molecules with a novel asymmetric induced-fit mechanism and carries out the hydrolysis according to a base-catalyzed reaction through activation of a water molecule by Asp48. From a structural comparison with other family members, it is concluded that a subgroup of the hot dog fold protein family, referred to as "asymmetric hot dog thioesterases" including medium chain acyl-CoA thioesterase II from Escherichia coli and human thioesterase III, might share the same oligomerization mode and the asymmetric induced-fit mechanism as observed in TtPaaI.

Legend

Protein

Chemical

Disease

Primary Citation of related structures