1J0D image
Deposition Date 2002-11-12
Release Date 2003-05-12
Last Version Date 2024-12-25
Entry Detail
PDB ID:
1J0D
Keywords:
Title:
ACC deaminase mutant complexed with ACC
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.27
R-Value Work:
0.22
Space Group:
C 2 2 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:1-aminocyclopropane-1-carboxylate deaminase
Mutations:S1A, K51T
Chain IDs:A, B, C, D
Chain Length:341
Number of Molecules:4
Biological Source:Williopsis saturnus
Ligand Molecules
Primary Citation
Reaction intermediate structures of 1-aminocyclopropane-1-carboxylate deaminase: insight into PLP-dependent cyclopropane ring-opening reaction
J.BIOL.CHEM. 278 41069 41076 (2003)
PMID: 12882962 DOI: 10.1074/jbc.M305865200

Abstact

The pyridoxal 5'-phosphate-dependent enzymes have been evolved to catalyze diverse substrates and to cause the reaction to vary. 1-Aminocyclopropane-1-carboxylate deaminase catalyzes the cyclopropane ring-opening reaction followed by deamination specifically. Since it was discovered in 1978, the enzyme has been widely investigated from the mechanistic and physiological viewpoints because the substrate is a precursor of the plant hormone ethylene and the enzymatic reaction includes a cyclopropane ring-opening. We have previously reported the crystal structure of the native enzyme. Here we report the crystal structures of the two reaction intermediates created by the mutagenesis complexed with the substrate. The substrate was validated in the active site of two forms: 1). covalent-bonded external aldimine with the coenzyme in the K51T form and 2). the non-covalent interaction around the coenzyme in the Y295F form. The orientations of the substrate in both structures were quite different form each other. In concert with other site-specific mutation experiments, this experiment revealed the ingenious and unique strategies that are used to achieve the specific activity. The substrate incorporated into the active site is reactivated by a two-phenol charge relay system to lead to the formation of a Schiff base with the coenzyme. The catalytic Lys51 residue may play a novel role to abstract the methylene proton from the substrate in cooperation with other factors, the carboxylate group of the substrate and the electron-adjusting apparatuses of the coenzyme.

Legend

Protein

Chemical

Disease

Primary Citation of related structures