1ISH image
Deposition Date 2001-12-05
Release Date 2002-03-13
Last Version Date 2024-11-06
Entry Detail
PDB ID:
1ISH
Keywords:
Title:
Crystal Structure Analysis of BST-1/CD157 complexed with ethenoNADP
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.40 Å
R-Value Free:
0.25
R-Value Work:
0.21
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:bone marrow stromal cell antigen 1
Gene (Uniprot):BST1
Mutations:N34D, N63T, N116A
Chain IDs:A, B
Chain Length:265
Number of Molecules:2
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Ligand Molecules
Primary Citation
Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities.
J.Mol.Biol. 316 711 723 (2002)
PMID: 11866528 DOI: 10.1006/jmbi.2001.5386

Abstact

cADPR is the novel second messenger that elicits calcium release from intracellular calcium stores and works independently of IP(3). In mammals, the ADP-ribosyl cyclase function is found in two membrane proteins, CD38 and BST-1/CD157. These enzymes, exposed extracellularly, bear cADPR hydrolase and NAD glycohydrolase activities. In spite of its functional importance, the structural basis of these enzymatic reactions remains elusive. We determined the crystal structures of the extracellular region of human BST-1 at atomic resolution in the free form and in complexes with five substrate analogues: nicotinamide, NMN, ATPgammaS, ethenoNADP, and ethenoNAD. The three-dimensional structural views of the reaction centre with these ligands revealed the mode of substrate binding and the catalytic mechanism of the multifunctional enzymatic reactions. In each catalytic cleft of the dimeric enzyme, substrates are recognized predominantly through van der Waals interactions with two tryptophan residues, and thereby the N-glycosidic bond of NAD is correctly exposed near a catalytic glutamate residue. Its carboxyl side-chain stabilizes the catalytic intermediate of the S(N)-1 type reaction. This conformation of the catalytic cleft also implies the mechanism of cyclization between the adenine base and the ribose. The three key residues are invariant among the sequences of BST-1, CD38, and Aplysia cyclase, and hence this substrate recognition mode and catalytic scheme appear to be common in the cyclase family.

Legend

Protein

Chemical

Disease

Primary Citation of related structures