1IAA image
Deposition Date 1994-05-09
Release Date 1994-08-31
Last Version Date 2024-10-30
Entry Detail
PDB ID:
1IAA
Title:
CRYSTAL STRUCTURES, SPECTROSCOPIC FEATURES, AND CATALYTIC PROPERTIES OF COBALT(II), COPPER(II), NICKEL(II), AND MERCURY(II) DERIVATIVES OF THE ZINC ENDOPEPTIDASE ASTACIN. A CORRELATION OF STRUCTURE AND PROTEOLYTIC ACTIVITY
Biological Source:
Source Organism:
Astacus astacus (Taxon ID: 6715)
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Work:
0.15
R-Value Observed:
0.15
Space Group:
P 31 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:ASTACIN
Chain IDs:A
Chain Length:200
Number of Molecules:1
Biological Source:Astacus astacus
Ligand Molecules
Primary Citation
Crystal structures, spectroscopic features, and catalytic properties of cobalt(II), copper(II), nickel(II), and mercury(II) derivatives of the zinc endopeptidase astacin. A correlation of structure and proteolytic activity.
J.Biol.Chem. 269 17111 17117 (1994)
PMID: 8006015

Abstact

The catalytic zinc ion of astacin, a prototypical metalloproteinase from crayfish, has been substituted by Co(II), Cu(II), Hg(II), and Ni(II) in order to probe the role of the metal for both catalysis and structure. Compared to Zn(II)-astacin, Co(II)- and Cu(II)-astacin display enzymatic activities of about 140 and 37%, respectively, while Ni(II)- and Hg(II)-astacin are almost inactive. The electron paramagnetic resonance spectrum of Cu(II)-astacin is typical of 5-fold coordinated copper(II), and its intense absorption maxima at 445 and 325 nm are probably due to ligand-metal charge-transfer transitions involving Tyr-149. This residue had been identified previously by x-ray crystallography of the zinc enzyme as a zinc ligand, in addition to three imidazoles and a glutamic acid-bound water molecule. We present now the refined high-resolution x-ray crystal structures of Cu(II)-, Co(II)-, and Ni(II)-astacin, which exhibit a virtually identical protein framework to the previously analyzed structures of Zn(II)-, apo-, and Hg(II)-astacin. In Co(II)- and Cu(II)-astacin, the metal is penta-coordinated similarly to the native zinc enzyme. In the Ni(II) derivative, however, an additional solvent molecule expands the metal coordination sphere to a distorted octahedral ligand geometry, while in Hg(II)-astacin, no ordered solvent molecule at all is observed in the inner coordination sphere of the metal. This indicates a close correlation between catalytic properties and ground-state metal coordination of astacin.

Legend

Protein

Chemical

Disease

Primary Citation of related structures