1I8Y image
Deposition Date 2001-03-16
Release Date 2002-04-17
Last Version Date 2024-10-30
Entry Detail
PDB ID:
1I8Y
Keywords:
Title:
SEMI-AUTOMATIC STRUCTURE DETERMINATION OF THE CG1 3-30 PEPTIDE BASED ON ARIA
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Conformers Calculated:
30
Conformers Submitted:
10
Selection Criteria:
structures with the lowest energy
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:GRANULIN-1
Mutagens:C15S, C25S
Chain IDs:A
Chain Length:28
Number of Molecules:1
Biological Source:
Ligand Molecules
Primary Citation
Solution structures of a 30-residue amino-terminal domain of the carp granulin-1 protein and its amino-terminally truncated 3-30 subfragment: implications for the conformational stability of the stack of two beta-hairpins.
Proteins 47 14 24 (2002)
PMID: 11870861 DOI: 10.1002/prot.10077.abs

Abstact

Carp granulins are members of an emerging class of proteins with a sequence motif encoding a parallel stack of two to four beta-hairpins. The carp granulin-1 protein forms a stack of four beta-hairpins, whereas its amino-terminal fragment appears to adopt a very stable stack of two beta-hairpins in solution. Here we determined a refined three-dimensional structure of this peptide fragment to examine potential conformational changes compared with the full-length protein. The structures were calculated with both a traditional method and a fast semiautomated method using ambiguous NMR distance restraints. The resulting sets of structures are very similar and show that a well-defined stack of two beta-hairpins is retained in the peptide. Conformational rearrangements compensating the loss of the carboxy-terminal subdomain of the native protein are restricted to the carboxy-terminal end of the peptide, the turn connecting the two beta-hairpins, and the Tyr(21) and Tyr(25) aromatic side chains. Further removal of the Val(1) and Ile(2) residues, which are part of the first beta-hairpin and components of two major hydrophobic clusters in the two beta-hairpin structure, results in the loss of the first beta-hairpin. The second beta-hairpin, which is closely associated with the first, retains a similar but somewhat less stable conformation. The invariable presence of the second beta-hairpin and the dependence of its stability on the first beta-hairpin suggest that the stack of two beta-hairpins may be an evolutionary conserved and autonomous folding unit. In addition, the high conformational stability makes the stack of two beta-hairpins an attractive scaffold for the development of peptide-based drug candidates.

Legend

Protein

Chemical

Disease

Primary Citation of related structures