1HWR image
Deposition Date 1998-03-20
Release Date 1999-03-23
Last Version Date 2024-05-22
Entry Detail
PDB ID:
1HWR
Title:
MOLECULAR RECOGNITION OF CYCLIC UREA HIV PROTEASE INHIBITORS
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 61
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:HIV-1 PROTEASE
Gene (Uniprot):gag-pol
Chain IDs:A, B
Chain Length:99
Number of Molecules:2
Biological Source:Human immunodeficiency virus 1
Ligand Molecules
Primary Citation
Molecular recognition of cyclic urea HIV-1 protease inhibitors.
J.Biol.Chem. 273 12325 12331 (1998)
PMID: 9575185 DOI: 10.1074/jbc.273.20.12325

Abstact

As long as the threat of human immunodeficiency virus (HIV) protease drug resistance still exists, there will be a need for more potent antiretroviral agents. We have therefore determined the crystal structures of HIV-1 protease in complex with six cyclic urea inhibitors: XK216, XK263, DMP323, DMP450, XV638, and SD146, in an attempt to identify 1) the key interactions responsible for their high potency and 2) new interactions that might improve their therapeutic benefit. The structures reveal that the preorganized, C2 symmetric scaffolds of the inhibitors are anchored in the active site of the protease by six hydrogen bonds and that their P1 and P2 substituents participate in extensive van der Waals interactions and hydrogen bonds. Because all of our inhibitors possess benzyl groups at P1 and P1', their relative binding affinities are modulated by the extent of their P2 interactions, e.g. XK216, the least potent inhibitor (Ki (inhibition constant) = 4.70 nM), possesses the smallest P2 and the lowest number of P2-S2 interactions; whereas SD146, the most potent inhibitor (Ki = 0.02 nM), contains a benzimidazolylbenzamide at P2 and participates in fourteen hydrogen bonds and approximately 200 van der Waals interactions. This analysis identifies the strongest interactions between the protease and the inhibitors, suggests ways to improve potency by building into the S2 subsite, and reveals how conformational changes and unique features of the viral protease increase the binding affinity of HIV protease inhibitors.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback