1HNI image
Deposition Date 1995-02-28
Release Date 1995-06-03
Last Version Date 2024-02-07
Entry Detail
PDB ID:
1HNI
Title:
STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN A COMPLEX WITH THE NONNUCLEOSIDE INHIBITOR ALPHA-APA R 95845 AT 2.8 ANGSTROMS RESOLUTION
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.80 Å
R-Value Work:
0.25
R-Value Observed:
0.25
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:HIV-1 REVERSE TRANSCRIPTASE (SUBUNIT P66)
Gene (Uniprot):gag-pol
Chain IDs:A
Chain Length:558
Number of Molecules:1
Biological Source:Human immunodeficiency virus 1
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:HIV-1 REVERSE TRANSCRIPTASE (SUBUNIT P51)
Gene (Uniprot):gag-pol
Chain IDs:B
Chain Length:427
Number of Molecules:1
Biological Source:Human immunodeficiency virus 1
Ligand Molecules
Primary Citation

Abstact

BACKGROUND HIV-1 reverse transcriptase (RT) is a multifunctional enzyme that copies the RNA genome of HIV-1 into DNA. It is a heterodimer composed of a 66 kDa (p66) and a 51 kDa (p51) subunit. HIV-1 RT is a crucial target for structure-based drug design, and potent inhibitors have been identified, whose efficacy, however, is limited by drug resistance. RESULTS The crystal structure of HIV-1 RT in complex with the non-nucleoside inhibitor alpha-anilinophenyl-acetamide (alpha-APA) R95845 has been determined at 2.8 A resolution. The inhibitor binds in a hydrophobic pocket near the polymerase active site. The pocket contains five aromatic amino acid residues and the interactions of the side chains of these residues with the aromatic rings of non-nucleoside inhibitors appear to be important for inhibitor binding. Most of the amino acid residues where mutations have been correlated with high levels of resistance to non-nucleoside inhibitors of HIV-1 RT are located close to alpha-APA. The overall fold of HIV-1 RT in complex with alpha-APA is similar to that found when in complex with nevirapine, another non-nucleoside inhibitor, but there are significant conformational changes relative to an HIV-1 RT/DNA/Fab complex. CONCLUSIONS The non-nucleoside inhibitor-binding pocket has a flexible structure whose mobility may be required for effective polymerization, and may be part of a hinge that permits relative movements of two subdomains of the p66 subunit denoted the 'palm' and 'thumb'. An understanding of the structure of the inhibitor-binding pocket, of the interactions between HIV-1 RT and alpha-APA, and of the locations of mutations that confer resistance to inhibitors provides a basis for structure-based design of chemotherapeutic agents for the treatment of AIDS.

Legend

Protein

Chemical

Disease

Primary Citation of related structures