1GEB image
Deposition Date 2000-11-01
Release Date 2000-11-15
Last Version Date 2023-10-25
Entry Detail
PDB ID:
1GEB
Title:
X-RAY CRYSTAL STRUCTURE AND CATALYTIC PROPERTIES OF THR252ILE MUTANT OF CYTOCHROME P450CAM
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.03 Å
R-Value Free:
0.22
R-Value Work:
0.18
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:CYTOCHROME P450-CAM
Gene (Uniprot):camC
Mutagens:T252I
Chain IDs:A
Chain Length:415
Number of Molecules:1
Biological Source:Pseudomonas putida
Primary Citation
X-ray crystal structure and catalytic properties of Thr252Ile mutant of cytochrome P450cam: roles of Thr252 and water in the active center.
J.Biochem. 128 965 974 (2000)
PMID: 11098139 DOI: 10.1093/oxfordjournals.jbchem.a022848

Abstact

The structure-function relationship in cytochrome P450cam monooxygenase was studied by employing its active site mutant Thr252Ile. X-ray crystallographic analyses of the ferric d-camphor-bound form of the mutant revealed that the mutation caused a structural change in the active site giving an enlarged oxygen-binding pocket that did not contain any hydrophilic group such as the OH group of Thr and H(2)O. The enzyme showed a low monooxygenase activity of ca. 1/10 of the activity of the wild-type enzyme. Kinetic analyses of each catalytic step revealed that the rate of proton-coupled reduction of the oxygenated intermediate of the enzyme, a ternary complex of dioxygen and d-camphor with the ferrous enzyme, decreased to about 1/30 of that of the wild-type enzyme, while the rates of other catalytic steps including the reduction of the ferric d-camphor-bound form by reduced putidaredoxin did not change significantly. These results indicated that a hydrophilic group(s) such as water and/or hydroxyl group in the active site is prerequisite to a proton supply for the reduction of the oxygenated intermediate, thereby giving support for the operation of a proton transfer network composed of Thr252, Asp251, and two other amino acids and water proposed by previous investigators.

Legend

Protein

Chemical

Disease

Primary Citation of related structures