1G9S image
Deposition Date 2000-11-27
Release Date 2002-08-28
Last Version Date 2024-04-03
Entry Detail
PDB ID:
1G9S
Keywords:
Title:
CRYSTAL STRUCTURE OF A COMPLEX BETWEEN E.COLI HPRT AND IMP
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.80 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 31 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:HYPOXANTHINE PHOSPHORIBOSYLTRANSFERASE
Gene (Uniprot):hpt
Chain IDs:A, B
Chain Length:182
Number of Molecules:2
Biological Source:Escherichia coli
Primary Citation
Crystal structures of free, IMP-, and GMP-bound Escherichia coli hypoxanthine phosphoribosyltransferase.
Protein Sci. 11 1626 1638 (2002)
PMID: 12070315 DOI: 10.1110/ps.0201002

Abstact

Crystal structures have been determined for free Escherichia coli hypoxanthine phosphoribosyltransferase (HPRT) (2.9 A resolution) and for the enzyme in complex with the reaction products, inosine 5'-monophosphate (IMP) and guanosine 5'-monophosphate (GMP) (2.8 A resolution). Of the known 6-oxopurine phosphoribosyltransferase (PRTase) structures, E. coli HPRT is most similar in structure to that of Tritrichomonas foetus HGXPRT, with a rmsd for 150 Calpha atoms of 1.0 A. Comparison of the free and product bound structures shows that the side chain of Phe156 and the polypeptide backbone in this vicinity move to bind IMP or GMP. A nonproline cis peptide bond, also found in some other 6-oxopurine PRTases, is observed between Leu46 and Arg47 in both the free and complexed structures. For catalysis to occur, the 6-oxopurine PRTases have a requirement for divalent metal ion, usually Mg(2+) in vivo. In the free structure, a Mg(2+) is coordinated to the side chains of Glu103 and Asp104. This interaction may be important for stabilization of the enzyme before catalysis. E. coli HPRT is unique among the known 6-oxopurine PRTases in that it exhibits a marked preference for hypoxanthine as substrate over both xanthine and guanine. The structures suggest that its substrate specificity is due to the modes of binding of the bases. In E. coli HPRT, the carbonyl oxygen of Asp163 would likely form a hydrogen bond with the 2-exocyclic nitrogen of guanine (in the HPRT-guanine-PRib-PP-Mg(2+) complex). However, hypoxanthine does not have a 2-exocyclic atom and the HPRT-IMP structure suggests that hypoxanthine is likely to occupy a different position in the purine-binding pocket.

Legend

Protein

Chemical

Disease

Primary Citation of related structures