1G8E image
Deposition Date 2000-11-17
Release Date 2001-03-07
Last Version Date 2024-11-20
Entry Detail
PDB ID:
1G8E
Keywords:
Title:
CRYSTAL STRUCTURE OF FLHD FROM ESCHERICHIA COLI
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Free:
0.29
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
I 4
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:FLAGELLAR TRANSCRIPTIONAL ACTIVATOR FLHD
Gene (Uniprot):flhD
Chain IDs:A, B
Chain Length:116
Number of Molecules:2
Biological Source:Escherichia coli
Primary Citation
Crystal structure of the global regulator FlhD from Escherichia coli at 1.8 A resolution.
Mol.Microbiol. 39 567 580 (2001)
PMID: 11169099 DOI: 10.1046/j.1365-2958.2001.02247.x

Abstact

FlhD is a 13.3 kDa transcriptional activator protein of flagellar genes and a global regulator. FlhD activates the transcription of class II operons in the flagellar regulon when complexed with a second protein FlhC (21.5 kDa). FlhD also regulates other expression systems in Escherichia coli. We are seeking to understand this plasticity of FlhD's DNA-binding specificity and, to this end, we have determined the crystal structure of the isolated FlhD protein. The structure was solved by substituting seleno-methionine for natural sulphur-methionine in FlhD, crystallizing the protein and determining the structure factor phases by the method of multiple-energy anomalous dispersion (MAD). The FlhD protein is dimeric. The dimer is tightly coupled, with an intimate contact surface, implying that the dimer does not easily dissociate. The FlhD monomer is predominantly alpha-helical. The C-termini of both FlhD monomers (residues 83-116) are completely disrupted by crystal packing, implying that this region of FlhD is highly flexible. However, part of the C-terminus structure in chain A (residues 83-98) was modelled using a native FlhD crystal. What is seen in chain A suggests a classic DNA-binding, helix-turn-helix (HTH) motif. FlhD does not bind DNA by itself, so it may be that the DNA-binding HTH motif becomes rigidly defined only when FlhD forms a complex with some other protein, such as FlhC. If this were true, it might explain how FlhD exhibits plasticity in its DNA-binding specificity, as each partner protein with which it forms a complex could allosterically affect the binding specificity of its HTH motif. A disulphide bridge is seen between the unique cysteine residues (Cys-65) of FlhD native homodimers. Alanine substitution at Cys-65 does not affect FlhD transcription activator activity, suggesting that the disulphide bond is not necessary for either dimer stability or this function of FlhD. Electrostatic potential analysis indicates that dimeric FlhD has a negatively charged surface.

Legend

Protein

Chemical

Disease

Primary Citation of related structures