1FE2 image
Deposition Date 2000-07-20
Release Date 2001-05-02
Last Version Date 2024-10-30
Entry Detail
PDB ID:
1FE2
Keywords:
Title:
CRYSTAL STRUCTURE OF DIHOMO-GAMMA-LINOLEIC ACID BOUND IN THE CYCLOOXYGENASE CHANNEL OF PROSTAGLANDIN ENDOPEROXIDE H SYNTHASE-1.
Biological Source:
Source Organism:
Ovis aries (Taxon ID: 9940)
Method Details:
Experimental Method:
Resolution:
3.00 Å
R-Value Free:
0.27
R-Value Work:
0.23
Space Group:
P 65 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:PROSTAGLANDIN ENDOPEROXIDE H SYNTHASE-1
Chain IDs:A
Chain Length:576
Number of Molecules:1
Biological Source:Ovis aries
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ASN A ASN GLYCOSYLATION SITE
Primary Citation
Mutational and X-ray crystallographic analysis of the interaction of dihomo-gamma -linolenic acid with prostaglandin endoperoxide H synthases.
J.Biol.Chem. 276 10358 10365 (2001)
PMID: 11121413 DOI: 10.1074/jbc.M009378200

Abstact

Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) catalyze the committed step in prostaglandin biosynthesis. Both isozymes can oxygenate a variety of related polyunsaturated fatty acids. We report here the x-ray crystal structure of dihomo-gamma-linolenic acid (DHLA) in the cyclooxygenase site of PGHS-1 and the effects of active site substitutions on the oxygenation of DHLA, and we compare these results to those obtained previously with arachidonic acid (AA). DHLA is bound within the cyclooxygenase site in the same overall L-shaped conformation as AA. C-1 and C-11 through C-20 are in the same positions for both substrates, but the positions of C-2 through C-10 differ by up to 1.74 A. In general, substitutions of active site residues caused parallel changes in the oxygenation of both AA and DHLA. Two significant exceptions were Val-349 and Ser-530. A V349A substitution caused an 800-fold decrease in the V(max)/K(m) for DHLA but less than a 2-fold change with AA; kinetic evidence indicates that C-13 of DHLA is improperly positioned with respect to Tyr-385 in the V349A mutant thereby preventing efficient hydrogen abstraction. Val-349 contacts C-5 of DHLA and appears to serve as a structural bumper positioning the carboxyl half of DHLA, which, in turn, positions properly the omega-half of this substrate. A V349A substitution in PGHS-2 has similar, minor effects on the rates of oxygenation of AA and DHLA. Thus, Val-349 is a major determinant of substrate specificity for PGHS-1 but not for PGHS-2. Ser-530 also influences the substrate specificity of PGHS-1; an S530T substitution causes 40- and 750-fold decreases in oxygenation efficiencies for AA and DHLA, respectively.

Legend

Protein

Chemical

Disease

Primary Citation of related structures