1FD6 image
Deposition Date 2000-07-19
Release Date 2001-09-19
Last Version Date 2024-05-22
Entry Detail
PDB ID:
1FD6
Keywords:
Title:
DELTA0: A COMPUTATIONALLY DESIGNED CORE VARIANT OF THE B1 DOMAIN OF STREPTOCOCCAL PROTEIN G
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Conformers Calculated:
100
Conformers Submitted:
40
Selection Criteria:
structures with the least restraint violations,structures with the lowest energy
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:IMMUNOGLOBULIN G BINDING PROTEIN G
Gene (Uniprot):spg
Mutations:Y3F, L7I, V39I
Chain IDs:A
Chain Length:57
Number of Molecules:1
Biological Source:Streptococcus sp.
Ligand Molecules
Primary Citation
Designed protein G core variants fold to native-like structures: sequence selection by ORBIT tolerates variation in backbone specification.
Protein Sci. 10 450 454 (2001)
PMID: 11266631 DOI: 10.1110/ps.32501

Abstact

The solution structures of two computationally designed core variants of the beta 1 domain of streptococcal protein G (G beta 1) were solved by (1)H NMR methods to assess the robustness of amino acid sequence selection by the ORBIT protein design package under changes in protein backbone specification. One variant has mutations at three of 10 core positions and corresponds to minimal perturbations of the native G beta 1 backbone. The other, with mutations at six of 10 positions, was calculated for a backbone in which the separation between G beta 1's alpha-helix and beta-sheet was increased by 15% relative to native G beta 1. Exchange broadening of some resonances and the complete absence of others in spectra of the sixfold mutant bespeak conformational heterogeneity in this protein. The NMR data were sufficiently abundant, however, to generate structures of similar, moderately high quality for both variants. Both proteins adopt backbone structures similar to their target folds. Moreover, the sequence selection algorithm successfully predicted all core chi(1) angles in both variants, five of six chi(2) angles in the threefold mutant and four of seven chi(2) angles in the sixfold mutant. We conclude that ORBIT calculates sequences that fold specifically to a geometry close to the template, even when the template is moderately perturbed relative to a naturally occurring structure. There are apparently limits to the size of acceptable perturbations: In this study, the larger perturbation led to undesired dynamic behavior.

Legend

Protein

Chemical

Disease

Primary Citation of related structures