1EUO image
Deposition Date 2000-04-17
Release Date 2000-05-10
Last Version Date 2024-11-06
Entry Detail
PDB ID:
1EUO
Title:
Crystal structure of nitrophorin 2 (prolixin-S)
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.24
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 21 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:NITROPHORIN 2
Chain IDs:A
Chain Length:180
Number of Molecules:1
Biological Source:Rhodnius prolixus
Primary Citation
The crystal structure of nitrophorin 2. A trifunctional antihemostatic protein from the saliva of Rhodnius prolixus
J.Biol.Chem. 275 30496 30503 (2000)
PMID: 10884386 DOI: 10.1074/jbc.M002857200

Abstact

Nitrophorin 2 (NP2) (also known as prolixin-S) is a salivary protein that transports nitric oxide, binds histamine, and acts as an anticoagulant during blood feeding by the insect Rhodnius prolixus. The 2.0-A crystal structure of NP2 reveals an eight-stranded antiparallel beta-barrel containing a ferric heme coordinated through His(57), similar to the structures of NP1 and NP4. All four Rhodnius nitrophorins transport NO and sequester histamine through heme binding, but only NP2 acts as an anticoagulant. Here, we demonstrate that recombinant NP2, but not recombinant NP1 or NP4, is a potent anticoagulant; recombinant NP3 also displays minor activity. Comparison of the nitrophorin structures suggests that a surface region near the C terminus and the loops between beta strands B-C and E-F is responsible for the anticoagulant activity. NP2 also displays larger NO association rates and smaller dissociation rates than NP1 and NP4, which may result from a more open and more hydrophobic distal pocket, allowing more rapid solvent reorganization on ligand binding. The NP2 protein core differs from NP1 and NP4 in that buried Glu(53), which allows for larger NO release rates when deprotonated, hydrogen bonds to invariant Tyr(81). Surprisingly, this tyrosine lies on the protein surface in NP1 and NP4.

Legend

Protein

Chemical

Disease

Primary Citation of related structures