1EEP image
Deposition Date 2000-02-01
Release Date 2000-03-29
Last Version Date 2024-02-07
Entry Detail
PDB ID:
1EEP
Keywords:
Title:
2.4 A RESOLUTION CRYSTAL STRUCTURE OF BORRELIA BURGDORFERI INOSINE 5'-MONPHOSPHATE DEHYDROGENASE IN COMPLEX WITH A SULFATE ION
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.40 Å
R-Value Free:
0.26
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
I 4
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:INOSINE 5'-MONOPHOSPHATE DEHYDROGENASE
Gene (Uniprot):guaB
Chain IDs:A, B
Chain Length:404
Number of Molecules:2
Biological Source:Borrelia burgdorferi
Ligand Molecules
Primary Citation
Crystal structure at 2.4 A resolution of Borrelia burgdorferi inosine 5'-monophosphate dehydrogenase: evidence of a substrate-induced hinged-lid motion by loop 6.
Biochemistry 39 4533 4542 (2000)
PMID: 10758003 DOI: 10.1021/bi992645l

Abstact

The conversion of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) is the committed and rate-limiting reaction in de novo guanine nucleotide biosynthesis. Inosine 5'- monophosphate dehydrogenase (IMPDH) is the enzyme that catalyzes the oxidation of IMP to XMP with the concomitant reduction of nicotinamide adenine dinucleotide (from NAD(+) to NADH). Because of its critical role in purine biosynthesis, IMPDH is a drug design target for anticancer, antiinfective, and immunosuppressive chemotherapy. We have determined the crystal structure of IMPDH from Borrelia burgdorferi, the bacterial spirochete that causes Lyme disease, with a sulfate ion bound in the IMP phosphate binding site. This is the first structure of IMPDH in the absence of substrate or cofactor where the active-site loop (loop 6), which contains the essential catalytic residue Cys 229, is clearly defined in the electron density. We report that a seven residue region of loop 6, including Cys229, is tilted more than 6 A away from its position in substrate- or substrate analogue-bound structures of IMPDH, suggestive of a conformational change. The location of this loop between beta6 and alpha6 links IMPDH to a family of beta/alpha barrel enzymes known to utilize this loop as a functional lid during catalysis. Least-squares minimization, root-mean-square deviation analysis, and inspection of the molecular surface of the loop 6 region in the substrate-free B. burgdorferi IMPDH and XMP-bound Chinese hamster IMPDH show that loop 6 follows a similar pattern of hinged rigid-body motion and indicates that IMPDH may be using loop 6 to bind and sequester substrate and to recruit an essential catalytic residue.

Legend

Protein

Chemical

Disease

Primary Citation of related structures