1E37 image
Deposition Date 2000-06-06
Release Date 2000-10-18
Last Version Date 2024-11-20
Entry Detail
PDB ID:
1E37
Title:
PORCINE PANCREATIC ELASTASE COMPLEXED WITH (3S, 4S)N-PARA-NITROBENZENESULPHONYL -3-ETHYL-4-(CARBOXYLIC ACID)PYRROLIDIN-2-ONE SOAKED IN PH 9 BUFFER FOR 1 MINUTE
Biological Source:
Source Organism:
SUS SCROFA (Taxon ID: 9823)
Method Details:
Experimental Method:
Resolution:
1.75 Å
R-Value Free:
0.23
R-Value Work:
0.19
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:ELASTASE
Gene (Uniprot):CELA1
Chain IDs:A (auth: B)
Chain Length:240
Number of Molecules:1
Biological Source:SUS SCROFA
Primary Citation

Abstact

beta-Lactams inhibit a range of enzymes via acylation of nucleophilic serine residues. Certain gamma-lactam analogues of monocyclic beta-lactams have also been shown to be reversible inhibitors of porcine pancreatic elastase (PPE), forming acyl-enzyme complexes that are stable with respect to hydrolysis. Crystallographic analysis at pH 5 of an acyl-enzyme complex formed with PPE and one of these inhibitors revealed the ester carbonyl located in the oxyanion hole in a similar conformation to that observed in the structure of a complex formed between a heptapeptide (beta-casomorphin-7) and PPE. Only weak electron density was observed for the His-57 side chain in its 'native' conformation. Instead, the His-57 side chain predominantly adopted a conformation rotated approx. 90 degrees from its normal position. PPE-gamma-lactam crystals were subjected to 'pH-jumps' by placing the crystals in a buffer of increased pH prior to freezing for data collection. The results indicate that the conformation of the gamma-lactam-derived acyl-enzyme species in the PPE active site is dependent on pH, a result having implications for the analysis of other serine protease-inhibitor structures at non-catalytic pH values. The results help to define the stereoelectronic relationship between the ester of the acyl-enzyme complex, the side chain of His-57 and the incoming nucleophile during the reversible (de)acylation steps, implying it is closely analogous to the hydrolytic deacylation step during catalytic peptide hydrolysis.

Legend

Protein

Chemical

Disease