1DMK image
Entry Detail
PDB ID:
1DMK
Keywords:
Title:
BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 4-AMINO-6-PHENYL-TETRAHYDROPTERIDINE
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
1999-12-14
Release Date:
2000-12-20
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.26
R-Value Work:
0.22
R-Value Observed:
0.22
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:NITRIC OXIDE SYNTHASE
Chain IDs:A, B
Chain Length:444
Number of Molecules:2
Biological Source:Bos taurus
Primary Citation

Abstact

Pathological nitric oxide (NO) generation in sepsis, inflammation, and stroke may be therapeutically controlled by inhibiting NO synthases (NOS). Here we targeted the (6R)-5,6,7,8-tetrahydro-l-biopterin (H(4)Bip)-binding site of NOS, which, upon cofactor binding, maximally increases enzyme activity and NO production from substrate l-arginine. The first generation of H(4)Bip-based NOS inhibitors employed a 4-amino pharmacophore of H(4)Bip analogous to antifolates such as methotrexate. We developed a novel series of 4-oxo-pteridine derivatives that were screened for inhibition against neuronal NOS (NOS-I) and a structure-activity relationship was determined. To understand the structural basis for pterin antagonism, selected derivatives were docked into the NOS pterin binding cavity. Using a reduced 4-oxo-pteridine scaffold, derivatives with certain modifications such as electron-rich aromatic phenyl or benzoyl groups at the 5- and 6-positions, were discovered to markedly inhibit NOS-I, possibly due to hydrophobic and electrostatic interactions with Phe(462) and Ser(104), respectively, within the pterin binding pocket. One of the most effective 4-oxo compounds and, for comparisons an active 4-amino derivative, were then co-crystallized with the endothelial NOS (NOS-III) oxygenase domain and this structure solved to confirm the hypothetical binding modes. Collectively, these findings suggest (i) that, unlike the antifolate principle, the 4-amino substituent is not essential for developing pterin-based NOS inhibitors and (ii), provide a steric and electrostatic basis for their rational design.

Legend

Protein

Chemical

Disease

Primary Citation of related structures