1DD7 image
Deposition Date 1999-11-08
Release Date 2000-03-29
Last Version Date 2024-05-22
Entry Detail
PDB ID:
1DD7
Keywords:
Title:
MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DOMAIN (DELTA 114) (N-[(1,3-BENZODIOXOL-5-YL)METHYL]-1-[2-(1H-IMIDAZOL-1-YL)PYRIMIDIN-4-YL]-4-(METHOXYCARBONYL)-PIPERAZINE-2-ACETAMIDE COMPLEX
Biological Source:
Source Organism:
Mus musculus (Taxon ID: 10090)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.25 Å
R-Value Free:
0.28
R-Value Work:
0.19
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:INDUCIBLE NITRIC OXIDE SYNTHASE
Gene (Uniprot):Nos2
Chain IDs:A
Chain Length:389
Number of Molecules:1
Biological Source:Mus musculus
Primary Citation

Abstact

Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC ) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC(50) values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-l-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (K(d) approximately 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cell-based assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor-heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein-protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED(50) values of <2 mg/kg in a rat model of endotoxin-induced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies.

Legend

Protein

Chemical

Disease

Primary Citation of related structures