1D7A image
Deposition Date 1999-10-16
Release Date 1999-12-03
Last Version Date 2024-11-20
Entry Detail
PDB ID:
1D7A
Keywords:
Title:
CRYSTAL STRUCTURE OF E. COLI PURE-MONONUCLEOTIDE COMPLEX.
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.50 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE
Mutations:M14(MSE), M23(MSE), M79(MSE), M110(MSE)
Chain IDs:A, B, C, D, E (auth: L), F (auth: M), G (auth: N), H (auth: O)
Chain Length:161
Number of Molecules:8
Biological Source:Escherichia coli
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET SELENOMETHIONINE
Ligand Molecules
Primary Citation

Abstact

BACKGROUND: Conversion of 5-aminoimidazole ribonucleotide (AIR) to 4-carboxyaminoimidazole ribonucleotide (CAIR) in Escherichia coli requires two proteins - PurK and PurE. PurE has recently been shown to be a mutase that catalyzes the unusual rearrangement of N(5)-carboxyaminoimidazole ribonucleotide (N(5)-CAIR), the PurK reaction product, to CAIR. PurEs from higher eukaryotes are homologous to E. coli PurE, but use AIR and CO(2) as substrates to produce CAIR directly. RESULTS: The 1.50 A crystal structure of PurE reveals an octameric structure with 422 symmetry. A central three-layer (alphabetaalpha) sandwich domain and a kinked C-terminal helix form the folded structure of the monomeric unit. The structure reveals a cleft at the interface of two subunits and near the C-terminal helix of a third subunit. Co-crystallization experiments with CAIR confirm this to be the mononucleotide-binding site. The nucleotide is bound predominantly to one subunit, with conserved residues from a second subunit making up one wall of the cleft. CONCLUSIONS: The crystal structure of PurE reveals a unique quaternary structure that confirms the octameric nature of the enzyme. An analysis of the native crystal structure, in conjunction with sequence alignments and studies of co-crystals of PurE with CAIR, reveals the location of the active site. The environment of the active site and the analysis of conserved residues between the two classes of PurEs suggests a model for the differences in their substrate specificities and the relationship between their mechanisms.

Legend

Protein

Chemical

Disease

Primary Citation of related structures