1BWS image
Deposition Date 1998-09-25
Release Date 1999-01-13
Last Version Date 2024-02-07
Entry Detail
PDB ID:
1BWS
Keywords:
Title:
CRYSTAL STRUCTURE OF GDP-4-KETO-6-DEOXY-D-MANNOSE EPIMERASE/REDUCTASE FROM ESCHERICHIA COLI A KEY ENZYME IN THE BIOSYNTHESIS OF GDP-L-FUCOSE
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
Space Group:
P 32 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:PROTEIN (GDP-4-KETO-6-DEOXY-D-MANNOSE EPIMERASE/REDUCTASE)
Gene (Uniprot):fcl
Chain IDs:A
Chain Length:321
Number of Molecules:1
Biological Source:Escherichia coli
Ligand Molecules
Primary Citation
GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Escherichia coli, a key enzyme in the biosynthesis of GDP-L-fucose, displays the structural characteristics of the RED protein homology superfamily.
Structure 6 1453 1465 (1998)
PMID: 9817848 DOI: 10.1016/S0969-2126(98)00144-0

Abstact

BACKGROUND The process of guanosine 5'-diphosphate L-fucose (GDP-L-fucose) biosynthesis is conserved throughout evolution from prokaryotes to man. In animals, GDP-L-fucose is the substrate of fucosyltransferases that participate in the biosynthesis and remodeling of glycoconjugates, including ABH blood group and Lewis-system antigens. The 'de novo' pathway of GDP-L-fucose biosynthesis from GDP-D-mannose involves a GDP-D-mannose 4,6 dehydratase (GMD) and a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (GMER). Neither of the catalytic mechanisms nor the three-dimensional structures of the two enzymes has been elucidated yet. The severe leukocyte adhesion deficiency (LAD) type II genetic syndrome is known to result from deficiencies in this de novo pathway. RESULTS The crystal structures of apo- and holo-GMER have been determined at 2.1 A and 2.2 A resolution, respectively. Each subunit of the homodimeric (2 x 34 kDa) enzyme is composed of two domains. The N-terminal domain, a six-stranded Rossmann fold, binds NADP+; the C-terminal domain (about 100 residues) displays an alpha/beta topology. NADP+ interacts with residues Arg12 and Arg36 at the adenylic ribose phosphate; moreover, a protein loop based on the Gly-X-X-Gly-X-X-Gly motif (where X is any amino acid) stabilizes binding of the coenzyme diphosphate bridge. The nicotinamide and the connected ribose ring are located close to residues Ser107, Tyr136 and Lys140, the putative GMER active-site center. CONCLUSIONS The GMER fold is reminiscent of that observed for UDP-galactose epimerase (UGE) from Escherichia coli. Consideration of the enzyme fold and of its main structural features allows assignment of GMER to the reductase-epimerase-dehydrogenase (RED) enzyme homology superfamily, to which short-chain dehydrogenase/reductases (SDRs) also belong. The location of the NADP+ nicotinamide ring at an interdomain cleft is compatible with substrate binding in the C-terminal domain.

Legend

Protein

Chemical

Disease

Primary Citation of related structures