1BWD image
Deposition Date 1998-09-23
Release Date 1999-01-13
Last Version Date 2023-08-09
Entry Detail
PDB ID:
1BWD
Keywords:
Title:
INOSAMINE-PHOSPHATE AMIDINOTRANSFERASE STRB1 FROM STREPTOMYCES GRISEUS
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
3.10 Å
R-Value Free:
0.26
R-Value Work:
0.19
Space Group:
P 43
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:PROTEIN (INOSAMINE-PHOSPHATE AMIDINOTRANSFERASE)
Gene (Uniprot):strB1
Chain IDs:A, B
Chain Length:348
Number of Molecules:2
Biological Source:Streptomyces griseus
Ligand Molecules
Primary Citation
Crystal structure of L-arginine:inosamine-phosphate amidinotransferase StrB1 from Streptomyces griseus: an enzyme involved in streptomycin biosynthesis.
Biochemistry 37 17664 17672 (1998)
PMID: 9922132 DOI: 10.1021/bi981949p

Abstact

Inosamine-phosphate amidinotransferases catalyze two nonconsecutive transamidination reactions in the biosynthesis of the streptomycin family of antibiotics. L-Arginine:inosamine-phosphate amidinotransferase StrB1 from Streptomyces griseus (StrB1) was cloned as an N-terminal hexa-histidine fusion protein, purified by affinity chromatography, and crystallized, and its crystal structure was solved by Patterson search methods at 3.1 A resolution. The structure is composed of five betabeta alphabeta-modules which are arranged circularly into a pseudo-5-fold symmetric particle. The three-dimensional structure is closely related to the structure of human L-arginine:glycine amidinotransferase (AT), but five loops (the 40-, 170-, 220-, 250-, and 270-loop) are organized very differently. The major changes are found in loops around the active site which open the narrow active site channel of AT to form an open and solvent-exposed cavity. In particular, module II of StrB1 is AT-like but lacks a 10-residue alpha-helix in the 170-loop. The concomitant reorganization of neighboring surface loops that surround the active site, i.e., the 40-loop and the 270-loop, results in an arrangement of loops which allows an unrestricted access of substrates to the cavity. However, the residues which are involved in substrate binding and catalysis are conserved in AT and StrB1 and are at equivalent topological positions, suggesting a similar reaction mechanism among amidinotransferases. The binding site for L-arginine had been deduced from its complex with AT. Molecular modeling revealed a possible binding mode for the second substrate scyllo-inosamine 4-phosphate.

Legend

Protein

Chemical

Disease

Primary Citation of related structures