1BEU image
Deposition Date 1998-05-18
Release Date 1998-08-12
Last Version Date 2024-02-07
Entry Detail
PDB ID:
1BEU
Title:
TRP SYNTHASE (D60N-IPP-SER) WITH K+
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.27
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:TRYPTOPHAN SYNTHASE
Gene (Uniprot):trpA
Mutagens:CHAIN A, D60N
Chain IDs:A
Chain Length:268
Number of Molecules:1
Biological Source:Salmonella typhimurium
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:TRYPTOPHAN SYNTHASE
Gene (Uniprot):trpB
Mutagens:CHAIN A, D60N
Chain IDs:B
Chain Length:397
Number of Molecules:1
Biological Source:Salmonella typhimurium
Primary Citation
Cryocrystallography and microspectrophotometry of a mutant (alpha D60N) tryptophan synthase alpha 2 beta 2 complex reveals allosteric roles of alpha Asp60.
Biochemistry 37 10653 10659 (1998)
PMID: 9692955 DOI: 10.1021/bi980779d

Abstact

We have investigated the role of Asp60 of the alpha-subunit in allosteric communication between the tryptophan synthase alpha- and beta-subunits. Crystallographic and microspectrophotometric studies have been carried out on a mutant (alpha D60N) tryptophan synthase alpha 2 beta 2 complex which has no observable alpha-activity, but has substantial beta-activity. Single-crystal polarized absorption spectra indicate that the external aldimine is the predominant L-serine intermediate and that the amount of the intermediate formed is independent of pH, monovalent cations, and allosteric effectors. The three-dimensional structure is reported for this mutant enzyme complexed with indole 3-propanol phosphate bound to the alpha-site and L-serine bound to the beta-site (alpha D60N-IPP-Ser), and this structure is compared with that of the unliganded mutant enzyme (alpha D60N). In the complex, L-serine forms a stable external aldimine with the pyridoxal phosphate coenzyme at the active site of the beta-subunit. The conformation of the unliganded mutant is almost identical to that of the wild type enzyme. However, the structure of the mutant complexed with IPP and serine exhibits ligand-induced conformational changes much smaller than those observed previously for another mutant enzyme in the presence of the same ligands (beta K87T-IPP-Ser) [Rhee, S., Parris, K. D., Hyde, C. C., Ahmed, S. A., Miles, E. W., and Davies, D. R. (1997) Biochemistry 36, 7664-7680]. The alpha D60N-IPP-Ser alpha 2 beta 2 complex does not undergo the following ligand-induced conformational changes: (1) the closure of the alpha-subunit loop 6 (residues 178-191), (2) the movement of the mobile subdomain (residues 93-189) of the beta-subunit, and (3) the rotation of the alpha-subunit relative to the beta-subunit. These observations show that alpha Asp60 plays important roles in the closure of loop 6 and in allosteric communication between the alpha- and beta-subunits.

Legend

Protein

Chemical

Disease

Primary Citation of related structures