1APB image
Entry Detail
PDB ID:
1APB
Title:
A PRO TO GLY MUTATION IN THE HINGE OF THE ARABINOSE-BINDING PROTEIN ENHANCES BINDING AND ALTERS SPECIFICITY: SUGAR-BINDING AND CRYSTALLOGRAPHIC STUDIES
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
1991-11-15
Release Date:
1992-01-15
Method Details:
Experimental Method:
Resolution:
1.76 Å
R-Value Observed:
0.19
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:L-ARABINOSE-BINDING PROTEIN
Chain IDs:A
Chain Length:306
Number of Molecules:1
Biological Source:Escherichia coli
Primary Citation

Abstact

The L-arabinose-binding protein (ABP) of Escherichia coli consists structurally of two distinct globular domains connected by a hinge of three separate peptide segments. Arabinose is bound and completely sequestered within the deep cleft between the two domains. With reduced affinity, ABP also binds D-galactose (approximately 2-fold reduction) and D-fucose (approximately 40-fold reduction). Experiments have been conducted to explore the role in sugar binding of the hinge connecting the two domains of ABP. To increase the flexibility of the hinge region, a glycine was substituted for a proline at position 254 by site-directed mutagenesis. Unexpectedly, this mutation resulted in the dramatic enhancement of galactose binding over that of arabinose. The affinity of the mutant ABP for galactose increased by over 20-fold, while that for arabinose and fucose remained relatively unchanged. We have measured association and dissociation rates of the Gly-254 ABP with L-arabinose, D-galactose, and D-fucose and have determined the crystallographic structure of the protein complexed with each of the three sugars. Both the ligand-binding kinetic measurements and structure analysis indicate that the altered specificity is due to an effective increase in the rigidity of the hinge in the closed conformation which is induced upon galactose binding. Stabilizing contacts are formed between the strands of the hinge in the Gly-254 ABP when galactose is bound which are not found in complexes with the other sugars or the liganded wild-type protein.

Legend

Protein

Chemical

Disease

Primary Citation of related structures