1A4L image
Entry Detail
PDB ID:
1A4L
Keywords:
Title:
ADA STRUCTURE COMPLEXED WITH DEOXYCOFORMYCIN AT PH 7.0
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
1998-01-31
Release Date:
1998-10-14
Method Details:
Experimental Method:
Resolution:
2.60 Å
R-Value Free:
0.27
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:ADENOSINE DEAMINASE
Chain IDs:A, B, C, D
Chain Length:349
Number of Molecules:4
Biological Source:Mus musculus
Primary Citation
Complexes of adenosine deaminase with two potent inhibitors: X-ray structures in four independent molecules at pH of maximum activity.
Biochemistry 37 8314 8324 (1998)
PMID: 9622483 DOI: 10.1021/bi980324o

Abstact

Adenosine deaminase, which catalyzes the irreversible hydrolytic deamination of adenosine nucleosides to inosine nucleosides and ammonia, is a key enzyme in purine metabolism and lymphoid development. The X-ray structures of murine adenosine deaminase with bound potent inhibitors (Ki values approximately 10(-13) M) (8R)-hydroxyl-2'-deoxycoformycin (pentostatin), a transition state analogue, and (6S)-hydroxyl-1,6-dihydropurine riboside, a reaction coordinate analogue, have been determined and refined to resolutions of 2.6 and 1.95 A, respectively. Crystals of both complexes were obtained at pH 7, where the enzyme is fully active, in an identical space group with the asymmetric unit containing four molecules. In addition to the very high degree of similarity between the four independent molecules in each complex structure, there is also considerable structural similarity of the complex with the dihydropurine riboside with that of an identical complex previously determined at pH 4.2 where the enzyme is 20% active. The interactions between the enzyme and the two analogues are extremely similar. These include the coordination of the 8R- or 6S-hydroxyl group of the analogues to the Zn2+ which mainly contributes to the strong potency and very high degree of stereospecificity of inhibition by these analogues. The interactions are further indicative of the structural and chemical requirements of substrates. These structures and recent site-directed mutagenesis have further shed light on the catalytic mechanism of the enzyme.

Legend

Protein

Chemical

Disease

Primary Citation of related structures