SOLUTION NMR


NMR Experiment
Experiment Type Sample Contents Ionic Strength Solvent pH Pressure Temprature (K)
1 2D 1H-15N HSQC 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
2 2D 1H-13C HSQC aromatic 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
3 3D HNCO 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
4 3D CBCA(CO)NH 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
5 3D HNCACB 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
6 3D HBHA(CO)NH 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
7 3D simultaneous Cali,Caro, and N NOESY 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
8 CCH-TOCSY 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
9 3D HN(CA)CO 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
10 2D 1H-13C HSQC aliphatic 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
11 2D ct-1H-13C HSQC aliphatic 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
12 2D ct-1H-13C HSQC aromatic 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
13 GFT(4,3d) HCCHCOSY ali 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
14 gft(4,3d) HCCHCOSY caro 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
15 2D ct-1H-13C HSQC aliphatic 28ms 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
16 2D ct-1H-13C hsqc aliphatic 28ms 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
17 2D ct-1H-13C hscq aliphatic 42ms 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
18 2D cr-1H-13C hsqc aliphatic 56ms 1.2 mM OR462, 90% H2O/10% D2O,pH7.5 ? 90% H2O/10% D2O 7.5 ambient 298
NMR Spectrometer Information
Spectrometer Manufacturer Model Field Strength
NMR Refinement
Method Details Software
simulated annealing Structure determination was performed by running CYANA and ASDP in parallel using NOE-based constraints and PHI,PSI, and CHI1 dihedral angle constraints from TALOSN. Consensus peak assignments were selected and used in iterative refinement with CYANA. The 20 conformers out of 100 with the lowest target function were further refined by simulated annealing in explicit water bath using the program CNS with PARAM19 force field NMR Ensemble Information 1
NMR Ensemble Information
Conformer Selection Criteria target function
Conformers Calculated Total Number 100
Conformers Submitted Total Number 20
Representative Model 1 (lowest energy)
Computation: NMR Software
# Classification Version Software Name Author
1 refinement ? CNS Brunger, Adams, Clore, Gros, Nilges and Read
2 structure solution ? CNS Brunger, Adams, Clore, Gros, Nilges and Read
3 geometry optimization ? CNS Brunger, Adams, Clore, Gros, Nilges and Read
4 refinement 3.0 CYANA Guntert, Mumenthaler and Wuthrich
5 geometry optimization 3.0 CYANA Guntert, Mumenthaler and Wuthrich
6 structure solution 3.0 CYANA Guntert, Mumenthaler and Wuthrich
7 data analysis 2.1 AutoStructure Huang, Tejero, Powers and Montelione
8 refinement 2.1 AutoStructure Huang, Tejero, Powers and Montelione
9 data analysis 2.1 AutoAssign Zimmerman, Moseley, Kulikowski and Montelione
10 chemical shift assignment 2.1 AutoAssign Zimmerman, Moseley, Kulikowski and Montelione
11 data analysis ? XEASY Bartels et al.
12 peak picking ? XEASY Bartels et al.
13 chemical shift assignment ? XEASY Bartels et al.
14 collection ? TopSpin Bruker Biospin
15 collection ? VnmrJ Varian
16 geometry optimization ? TALOSN Shen, Cornilescu, Delaglio and Bax
17 data analysis 1.0 AS-DP (AS-DP) Huang,Tejero,Powers, and Montelione
18 structure solution 1.0 AS-DP (AS-DP) Huang,Tejero,Powers, and Montelione
19 chemical shift assignment 1.8.4 CARA Keller and Wuthrich
20 peak picking 1.8.4 CARA Keller and Wuthrich
21 structure validation ? PSVS Bhattacharya, Montelione
Feedback Form
Name
Email
Institute
Feedback