

Apr 23, 2025 – 02:48 PM EDT

PDB ID	:	$9\mathrm{C1L} \ / \ \mathrm{pdb} \ 00009\mathrm{c1l}$
EMDB ID	:	EMD-45123
Title	:	Rhesus rotavirus (VP1 structure at 2.65 Angstrom resolution)
Authors	:	Jenni, S.; Herrmann, T.; De Sautu, M.; Harrison, S.C.
Deposited on	:	2024-05-29
Resolution	:	2.65 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev 117
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.42

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.65 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#Entries)$	${f EM} {f structures} \ (\#{f Entries})$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	887	80% 8	%	12%
1	В	887	81% 7	7%	12%
1	С	887	82%	8%	9%
1	D	887	84%	9%	7%
1	Е	887	82%	8%	10%
1	F	887	84%	7%	9%
1	G	887	83%	7%	9%
1	Н	887	85%	6%	9%
1	Ι	887	83%	7%	10%

Mol	Chain	Length	Quality of chain		
1	J	887	84%	8%	8%
2	Р	1088	90%		9%

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 149101 atoms, of which 74750 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
1	Δ	789	Total	С	Η	Ν	Ο	S	0	0
	A	102	12800	4057	6413	1102	1192	36	0	0
1	Р	781	Total	С	Η	Ν	Ο	S	0	0
	D	101	12786	4052	6408	1101	1189	36	0	0
1	С	803	Total	С	Η	Ν	Ο	S	0	0
	U	003	13164	4174	6595	1131	1228	36	0	0
1	П	827	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
	D	021	13573	4297	6809	1163	1268	36	0	
1	F	705	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
1	Ľ	195	13027	4132	6529	1118	1212	36	0	0
1	F	805	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
1	Г	805	13205	4186	6619	1134	1230	36	0	0
1	C	804	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
1	G	004	13186	4180	6608	1133	1229	36	0	0
1	н	805	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
1	11	000	13205	4186	6619	1134	1230	36	0	0
1	т	700	Total	С	Η	Ν	Ο	S	0	0
1	1	199	13098	4154	6563	1126	1219	36	0	0
1	T	816	Total	С	Н	Ν	Ο	S	0	0
	J	610	13390	4242	6713	1149	1250	36	0	0

• Molecule 1 is a protein called Inner capsid protein VP2.

• Molecule 2 is a protein called RNA-directed RNA polymerase.

Mol	Chain	Residues	Atoms					AltConf	Trace	
2	Р	1086	Total 17667	C 5636	Н 8874	N 1456	O 1662	S 39	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1. 1	nner capsid pr					
Chain A:		80%		8%	12%	
MET ALA TYR ARG ARG GLY ARG ARG ARG CLU	THR ASN LEU LEU CLYS GLN ASP ASP ASP ASP ASP CLN GLN	LYS GLU GLU ASN ASN VAL ASN THR	SER GLU GLU ASN LYS ASN ALA THR LYS PRO GLN	LEU SER GLU LYS VAL LEU SER GLN	LYS GLU GLU VAL ILE THR	ASP ASN GLU GLU
GLU ILE LYS LYS ALA ASP GLU VAL LYS LYS SER	ASN LYS GLU GLU GLU CLY GLN LEU GLN LEU GLU	VAL LYS LYS LYS GLU GLU HIS GLU HIS GLU	VAL VAL GLN TYR GLU ILE CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	PRO THR PHE E106 K125	N175 0179 0185	D192 R238
272 273 277 277 281 281	294 296 309 311 311		21 23 33 441 441	643 855 855	595 501 504	18 22
	A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A4 A3 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4	A N O N A		LE TE RE		HE
E623 R624 D660 D660 E661 S662 E682 E682	R684 R685 S703 Q718 E723 E723	1740 1755 1755 1755 1755 1755 1755 1755	D786 D786 V794 Y807 T827 S828 S828 K834	4839 R843 L853 A867	D868 T869 L887	
• Molecule 1: 1	Inner capsid pr	otein VP2				
Chain B:		81%		7%	12%	
MET ALA TYR ARG LYS ARG GLY ARG ARG GLU	THR ASN LEU LYS GLN ASP ASP ASP ASP ASP ASP ASP ASP	LYS GLU GLU GLU GLU GLU CYS ASN VAL ASN THR	SER GLU ASN LYS ASN ALA ALA THR LYS PRO GLN	LEU SER GLU LYS VAL LEU SER SER GLN	LYS GLU GLU VAL TLE THR	ASP ASN GLN GLU
				<mark>k</mark> ∞ <mark></mark>	a a a	<u>ത</u> ന
GLU TLE LYS LYS ALA ASP GLU VAL LYS CLUS SER	ASN LYSS GLU GLU GLU SER LYSS CLN CLN CLU CLU	LEV LEY LYS CLU GLU GLU GLU CYS	CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	PHC THR PHE GLU GLU K10 R13	R15 N17 Q17	L18 V19
S209 1211 1211 1211 1211 1211 1211 1211 1	F278 D296 L311 1334 A336 A336	V340 L365 V420 R421 R428 R428	F481 R505 V509 R546 R546 R546 E562	H574 1595 1601 H618	Y621 R624 I625 R655	D660 1661 S662
D666 S703 Q718 E723 V728	LT34 L734 T740 V764 A765 D786 D786	T827 S828 Y833 K834 K834 Q839 Q839 R843	L853 L853 D868 T869 V870 E871 E871 E873 T872 L872 L887			
• Molecule 1: 1	Inner capsid pr	rotein VP2				
Chain C:		82%		8%	9%	
MET ALA TYR ARG LYS GLY ALA ARG ARG GLU	THR ASN LEU LYS GLN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	GLU GLU GLU GLU ASN ASN ASN THR	ASN GLU ASN LYS ASN ASN ALA THR LYS PRO GLN	LEU SER GLU LYS VAL LEU SER GLN	LYS GLU GLU VAL ILE THR	ASP ASN GLU GLU

• Molecule 1: Inner capsid protein VP2

V76 A765 • Molecule 1: Inner capsid protein VP2 Chain D: 84% 9% A867 D868 T869 <mark>V870</mark> E871 • Molecule 1: Inner capsid protein VP2 Chain E: 82% 8% 10%

• Molecule 1: Inner capsid protein VP2

Chain F: 84% 7% 9%

Q718 Q788 E723 Q561 N733 Q561 N733 Q561 Y751 1377 Y60 1412 Y615 7405 Y825 1412 Y825 1412 Y825 1420 Y825 1420 Y826 1420 Y826 1420 Y826 1543 Y609 1544 Y609 1540 Y609 1540 Y609 1641 Y609 1641 Y609 1640 Y609 1640 Y609 1640 Y604 1640 Y604</td

• Molecule 1: Inner capsid protein VP2

Chain G:	83%	7% 9%
MET TYR ALEA TYR ARG ARG ARG ARG ARG ARG ARG CLU CVS GLU GLU GLU GLU	GLU LYS ASN ASN ASN ASN ASN ASN ASN ASN ASN CLU ASN CLU ASN CLU CYS ASN CLU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	LYS VAL SER CLU CLYS CLN CLYS CLV CLU CLV CLU CLV CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
GLU TLE TLE TLE TLE ALA ASP ASP CLY CLY SER CLY SER CLY CLY CLY CLU CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	N1 42 D1 64 N1 75 N1 75 178 178 178 1214 D2 42 D2 43 D1 64 D1 75 D1 64 D1 75 D1 75 D	L293 L293 L299 L311 L311 L315 S38 S38 S38 S38 S38 S38 S38 S38 S38 S38
D359 1367 1367 9368 9368 9368 7368 7386 7386 7408 7420 7421 7420 7421 7421 7421 7428 7428 7428 7428 7428 7428 7428 7428	V609 V517 L517 M518 Q519 Q519 Q513 D511 D51 D51 D51 D51 D51 D51 D51 D51 D5	CS2 C593 H618 F61 F62 F62 F660 F660 F660 S662 S662 S662
9668 E682 R685 R685 R685 R685 R685 R685 R685 R685	1827 V832 D879 L887	
• Molecule 1: Inner capsid prote	in VP2	
Chain H:	85%	6% 9%
MET TYR ALA ALA ARG CYS ARG ALA ARG ALA ARG ALU CYS GLU GLU GLU GLU	GLU LYS LYS ASN ASN ASN ASN GLU ASN ASN ASN CLU ASN ASN CLU ASN CLU CYS ASN CLU ASN ASN CLU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	LITS VAL VAL EU SER GLU SER CLU SER CLU VAL THR ASP ASP ASN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
CLU TLE LYS LYS ASP ASP ASP CLU CYS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	V123 R142 L174 L174 L174 D186 124 1214 1214 1214 1251 1251 1251 1251	042 042 4361 1362 1362 1363 1362 1363 1412 1412 1412 1412
V510 V510 V510 V530 V530 R646 R646 K682 C592 C592 C592 C592 V613 V613 V613 V613 L640	Me45 We49 D666 D667 D667 D667 D667 B674 D674 D674 D674 D674 D674 D674 D674 D	L742 L742 A765 L766 L766 L766 L766 L766 L766 L766 L
1880 1887		
• Molecule 1: Inner capsid prote	in VP2	
Chain I:	83%	7% 10%
MET TYR ALA ARG ARG ARG ALY ALA ARG ALU CLY S ALU ARD ARG ALU CLU CLU CLU CLU CLU	GLU LYSS LYSS LYSS ASN VAL ASN ASN ASN ASN CLU ASN ASN LYS ASN CLU CLU CLU SER CLU SCU CLU SCU CLU CLU SCU CLU SCU CLU SCU CLU SCU CLU SCU CLU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	LYS VAL VAL LEU SER CLU SER CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
01U 11E 17E 11E 17S 11E 17S 01U 17S 01U 17S 17S 01U 17S 01U 01U 01U 01U 01U 17S 000 000 000000000000000000000000000	THR LYS GLU GLU GLU GLU GLU E92 E92 D164 1174 1188 L174 1214 1214 1214	1299 1299 1311 1311 1311 1313 1353 1353 1353 13
1405 1412 7481 7481 7487 7487 7487 8601 8601 8602 8602 1513 1513 1513 1513 8531 8531	6539 1540 1541 1542 1543 1546 1546 1562 8562 8562 8582 8582 8582 8618 8618 8618 8621 8621	1640 D674 R677 B682 R685 R685 R685 R685 R685
	WORLDWIDE PROTEIN DATA BANK	

• Molecule 1: Inner capsid protein VP2

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	469892	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Chain		lengths	Bond angles		
IVIOI	Ullaill	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.26	0/6503	0.50	0/8823	
1	В	0.26	0/6494	0.49	0/8810	
1	С	0.26	0/6689	0.50	0/9074	
1	D	0.26	0/6884	0.49	0/9332	
1	Е	0.26	0/6617	0.50	0/8979	
1	F	0.26	0/6706	0.49	0/9096	
1	G	0.26	0/6698	0.49	0/9085	
1	Н	0.26	0/6706	0.49	0/9096	
1	Ι	0.26	0/6655	0.49	0/9029	
1	J	0.26	0/6797	0.49	0/9217	
2	Р	0.26	0/8967	0.48	0/12124	
All	All	0.26	0/75716	0.49	0/102665	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	6387	6413	6413	43	0
1	В	6378	6408	6408	36	0
1	С	6569	6595	6595	41	0
1	D	6764	6809	6809	46	0
1	Е	6498	6529	6529	44	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	F	6586	6619	6619	34	0
1	G	6578	6608	6608	37	0
1	Н	6586	6619	6619	33	0
1	Ι	6535	6563	6563	34	0
1	J	6677	6713	6713	42	0
2	Р	8793	8874	8872	62	0
All	All	74351	74750	74748	427	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (427) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:P:937:TYR:OH	2:P:971:ASP:OD2	1.97	0.83
1:A:546:ARG:NH2	1:A:595:ILE:O	2.12	0.82
1:E:868:ASP:OD2	1:I:405:THR:OG1	1.99	0.80
1:J:91:LYS:NZ	2:P:642:GLU:OE2	2.15	0.80
2:P:768:SER:OG	2:P:774:GLU:OE2	2.00	0.80
1:A:368:GLN:NE2	2:P:990:GLU:OE2	2.18	0.77
1:E:270:GLU:OE1	1:E:307:ARG:NH1	2.18	0.76
1:H:247:ASN:OD1	1:H:850:THR:OG1	2.01	0.76
1:C:546:ARG:NH2	1:C:595:ILE:O	2.20	0.75
1:I:674:ASP:OD1	1:I:677:ARG:NH2	2.20	0.75
1:B:868:ASP:OD2	1:F:405:THR:OG1	2.02	0.75
1:A:523:GLN:O	1:A:533:LYS:NZ	2.18	0.74
1:B:546:ARG:NH2	1:B:595:ILE:O	2.21	0.74
1:E:546:ARG:NH2	1:E:595:ILE:O	2.20	0.74
2:P:880:ASP:OD2	2:P:1069:LYS:NZ	2.19	0.73
1:I:486:GLN:O	1:I:488:ARG:NH1	2.21	0.73
2:P:729:ARG:NH2	2:P:767:ASP:O	2.23	0.72
1:E:348:SER:OG	1:E:350:GLU:OE1	2.06	0.71
2:P:528:GLN:O	2:P:531:THR:OG1	2.08	0.71
2:P:44:LYS:NZ	2:P:61:GLU:OE2	2.23	0.71
1:I:786:ASP:OD2	1:I:830:THR:OG1	2.08	0.70
1:J:175:ASN:OD1	1:J:179:GLN:NE2	2.25	0.70
1:G:682:GLU:OE1	1:G:685:ARG:NH1	2.25	0.70
1:E:152:ARG:NH1	1:E:723:GLU:OE1	2.25	0.70
1:F:247:ASN:OD1	1:F:850:THR:OG1	2.05	0.69
1:G:486:GLN:O	1:G:488:ARG:NH1	2.25	0.69
1:H:412:ILE:HG22	1:H:543:LEU:HD22	1.74	0.69

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:296:ASP:OD2	1:H:582:LYS:NZ	2.26	0.68
1:B:152:ARG:NH1	1:B:723:GLU:OE1	2.26	0.68
1:H:674:ASP:OD1	1:H:677:ARG:NH2	2.27	0.67
1:I:682:GLU:OE1	1:I:685:ARG:NH1	2.27	0.67
1:C:152:ARG:NH1	1:C:723:GLU:OE1	2.26	0.67
1:D:221:ASP:O	1:D:229:ARG:NH2	2.28	0.67
1:C:868:ASP:OD2	1:G:405:THR:OG1	2.09	0.67
1:E:723:GLU:OE2	1:E:839:GLN:NE2	2.28	0.67
2:P:571:SER:OG	2:P:586:TYR:O	2.14	0.66
1:A:175:ASN:OD1	1:A:179:GLN:NE2	2.29	0.66
1:D:546:ARG:NH2	1:D:595:ILE:O	2.29	0.65
1:F:353:ILE:HD11	1:F:377:ILE:HB	1.78	0.65
1:J:481:PHE:CE1	1:J:509:VAL:HG21	2.31	0.65
1:F:546:ARG:NH1	1:F:592:CYS:O	2.30	0.65
1:A:412:ILE:CG2	1:A:543:LEU:HD22	2.27	0.65
1:F:412:ILE:HG22	1:F:543:LEU:HD22	1.77	0.65
1:G:412:ILE:HG22	1:G:543:LEU:HD22	1.77	0.65
1:B:188:LEU:HD11	1:B:264:LEU:HD21	1.79	0.65
1:C:309:ASN:O	1:C:622:ASN:ND2	2.30	0.64
1:G:355:LYS:NZ	1:G:359:ASP:OD2	2.31	0.64
1:J:376:GLY:O	1:J:590:SER:OG	2.16	0.64
1:B:188:LEU:HD11	1:B:264:LEU:CD2	2.28	0.64
1:D:69:LYS:HA	1:D:80:LEU:HD11	1.79	0.64
1:C:556:LEU:O	1:C:560:ASN:ND2	2.31	0.63
1:E:296:ASP:OD2	1:I:582:LYS:NZ	2.31	0.63
1:C:104:THR:OG1	1:C:584:GLN:OE1	2.17	0.62
1:C:703:SER:O	1:C:834:LYS:NZ	2.31	0.61
1:E:412:ILE:CG2	1:E:543:LEU:HD22	2.31	0.61
1:A:311:LEU:O	1:A:618:HIS:NE2	2.33	0.61
1:I:481:PHE:CE1	1:I:509:VAL:HG21	2.35	0.61
1:J:486:GLN:O	1:J:488:ARG:NH1	2.33	0.61
1:J:723:GLU:N	1:J:723:GLU:OE1	2.32	0.61
2:P:791:LEU:HD22	2:P:856:ALA:HB1	1.82	0.61
1:E:311:LEU:O	1:E:618:HIS:NE2	2.33	0.61
1:B:723:GLU:OE2	1:B:839:GLN:NE2	2.33	0.60
1:A:125:LYS:NZ	1:A:192:ASP:OD2	2.33	0.60
1:G:660:ASP:OD1	1:G:662:SER:OG	2.19	0.60
1:E:601:ILE:HD11	1:E:869:THR:CG2	2.31	0.60
2:P:77:TYR:CZ	2:P:748:LEU:HD13	2.37	0.60
1:H:693:LEU:HD12	1:H:696:MET:SD	2.42	0.60
1:D:311:LEU:O	1:D:618:HIS:NE2	2.33	0.60

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:601:ILE:HD11	1:C:869:THR:HG21	1.84	0.59
1:G:175:ASN:ND2	1:G:179:GLN:OE1	2.35	0.59
1:H:174:LEU:HD22	1:H:640:LEU:HD12	1.84	0.59
2:P:261:PHE:O	2:P:507:THR:OG1	2.11	0.59
1:B:601:ILE:HD11	1:B:869:THR:CG2	2.33	0.59
2:P:680:ARG:HD3	2:P:687:ILE:HD11	1.84	0.59
1:A:154:TYR:OH	1:A:723:GLU:OE2	2.20	0.59
2:P:24:ILE:HD11	2:P:49:SER:OG	2.02	0.58
1:B:195:VAL:HG21	1:B:209:SER:HA	1.86	0.58
1:C:428:ARG:HG2	1:H:530:VAL:HG11	1.85	0.58
1:D:97:ILE:HD11	1:D:374:LEU:HB2	1.86	0.58
1:G:481:PHE:CD1	1:G:509:VAL:HG21	2.39	0.58
1:F:175:ASN:OD1	1:F:179:GLN:NE2	2.36	0.58
1:A:412:ILE:HG22	1:A:543:LEU:HD22	1.86	0.58
1:G:481:PHE:CE1	1:G:509:VAL:HG21	2.38	0.58
2:P:495:SER:OG	2:P:499:GLN:O	2.12	0.58
1:A:660:ASP:OD2	1:A:662:SER:OG	2.22	0.57
1:C:601:ILE:HD11	1:C:869:THR:CG2	2.35	0.57
1:D:137:GLN:NE2	1:D:221:ASP:OD2	2.35	0.57
1:D:663:ARG:NE	1:I:354:GLN:OE1	2.37	0.57
1:F:309:ASN:O	1:F:622:ASN:ND2	2.36	0.57
1:F:481:PHE:CE1	1:F:509:VAL:HG21	2.39	0.57
1:H:481:PHE:CE1	1:H:509:VAL:HG21	2.38	0.57
1:H:546:ARG:NH1	1:H:592:CYS:O	2.36	0.57
1:A:703:SER:O	1:A:834:LYS:NZ	2.34	0.57
1:H:517:LEU:HD11	1:H:543:LEU:HD23	1.87	0.57
1:J:309:ASN:O	1:J:622:ASN:ND2	2.38	0.56
1:C:480:HIS:O	1:C:484:ASN:ND2	2.37	0.56
1:G:311:LEU:O	1:G:618:HIS:NE2	2.36	0.56
1:J:355:LYS:NZ	1:J:359:ASP:OD2	2.37	0.56
1:F:270:GLU:OE1	1:F:307:ARG:NH1	2.38	0.56
2:P:363:TYR:CZ	2:P:367:ILE:HD11	2.40	0.56
2:P:729:ARG:NE	2:P:770:ASP:OD1	2.38	0.56
1:H:825:VAL:O	1:H:827:THR:HG23	2.06	0.56
1:H:363:GLU:OE1	1:H:363:GLU:N	2.37	0.56
1:D:398:THR:HB	1:D:580:THR:HG22	1.87	0.56
1:E:786:ASP:OD2	1:E:828:SER:OG	2.24	0.56
1:G:517:LEU:HD11	1:G:543:LEU:HD23	1.88	0.56
1:D:601:ILE:HD11	1:D:869:THR:OG1	2.05	0.55
2:P:887:VAL:HG22	2:P:1054:LEU:CD2	2.35	0.55
1:D:396:GLN:OE1	1:D:574:HIS:ND1	2.38	0.55

	ious puge	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:F:481:PHE:CD1	1:F:509:VAL:HG21	2.41	0.55
1:E:309:ASN:O	1:E:622:ASN:ND2	2.37	0.55
1:C:397:ARG:NH2	1:C:579:THR:OG1	2.40	0.55
1:D:403:PHE:HB3	1:D:585:LEU:HD12	1.89	0.55
1:H:742:LEU:HD21	1:H:766:LEU:HB3	1.89	0.55
2:P:1084:ASN:O	2:P:1087:GLN:NE2	2.36	0.55
1:B:311:LEU:O	1:B:618:HIS:NE2	2.37	0.55
1:D:868:ASP:OD2	1:H:405:THR:OG1	2.14	0.55
1:H:481:PHE:CD1	1:H:509:VAL:HG21	2.42	0.55
1:E:412:ILE:HG22	1:E:543:LEU:HD22	1.88	0.55
1:D:336:ALA:O	1:D:340:VAL:HG23	2.06	0.55
2:P:103:THR:HG22	2:P:103:THR:O	2.06	0.55
1:A:868:ASP:OD1	1:A:869:THR:N	2.40	0.55
1:D:152:ARG:NH1	1:D:723:GLU:OE1	2.40	0.55
1:I:546:ARG:NH1	1:I:592:CYS:O	2.40	0.54
1:I:621:TYR:CZ	1:I:625:ILE:HD11	2.41	0.54
1:J:377:ILE:O	1:J:377:ILE:HG22	2.07	0.54
1:A:718:GLN:HA	1:A:827:THR:HG22	1.90	0.54
1:E:125:LYS:NZ	1:E:192:ASP:OD2	2.41	0.54
1:I:481:PHE:CD1	1:I:509:VAL:HG21	2.42	0.54
1:J:125:LYS:NZ	1:J:192:ASP:OD2	2.33	0.54
1:D:352:GLN:NE2	1:D:593:MET:O	2.41	0.54
1:G:667:ASP:OD1	1:G:668:GLN:N	2.41	0.54
2:P:855:SER:O	2:P:859:THR:HG23	2.07	0.54
2:P:787:ALA:O	2:P:790:SER:OG	2.18	0.54
1:I:164:ASP:N	1:I:164:ASP:OD1	2.40	0.54
1:J:546:ARG:NH1	1:J:592:CYS:O	2.40	0.54
2:P:505:ASP:OD1	2:P:505:ASP:N	2.41	0.54
2:P:561:TYR:O	2:P:564:THR:OG1	2.22	0.53
1:C:350:GLU:OE2	1:D:71:SER:OG	2.08	0.53
1:D:344:LYS:NZ	1:D:345:GLU:OE2	2.41	0.53
1:E:601:ILE:HD11	1:E:869:THR:HG21	1.89	0.53
1:F:277:ILE:HD11	1:F:299:LEU:HD11	1.90	0.53
1:H:815:ASP:OD1	1:H:815:ASP:N	2.39	0.53
1:B:601:ILE:HD11	1:B:869:THR:HG21	1.90	0.53
1:C:311:LEU:O	1:C:618:HIS:NE2	2.37	0.53
1:J:363:GLU:N	1:J:363:GLU:OE1	2.41	0.53
2:P:186:ASN:ND2	2:P:192:GLU:OE2	2.40	0.53
1:A:336:ALA:O	1:A:340:VAL:HG23	2.09	0.53
1:B:420:VAL:HG23	1:B:421:VAL:HG23	1.91	0.53
1:D:320:ASN:O	1:D:671:ARG:NH2	2.39	0.53

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:398:THR:HB	1:C:580:THR:HG22	1.91	0.53
1:D:397:ARG:NH2	1:D:579:THR:OG1	2.40	0.53
2:P:24:ILE:HD12	2:P:77:TYR:HE1	1.73	0.53
2:P:141:ASN:ND2	2:P:208:ASN:OD1	2.41	0.53
1:E:195:VAL:HG21	1:E:209:SER:HA	1.91	0.52
1:B:621:TYR:CZ	1:B:625:ILE:HD11	2.43	0.52
1:D:117:ASP:O	1:D:119:LYS:NZ	2.39	0.52
1:J:728:VAL:CG2	1:J:806:LEU:HD11	2.40	0.52
2:P:24:ILE:HD12	2:P:77:TYR:CE1	2.44	0.52
1:A:541:LEU:HD13	1:E:528:MET:CE	2.40	0.52
1:E:420:VAL:HG23	1:E:421:VAL:HG23	1.90	0.52
1:C:221:ASP:O	1:C:229:ARG:NH2	2.42	0.52
1:B:718:GLN:HA	1:B:827:THR:HG22	1.92	0.52
1:C:543:LEU:HG	1:C:550:LEU:HD11	1.91	0.52
2:P:887:VAL:HG22	2:P:1054:LEU:HD21	1.91	0.51
1:J:349:THR:OG1	2:P:358:GLU:OE2	2.11	0.51
2:P:51:ASN:OD1	2:P:53:LEU:HD13	2.10	0.51
1:E:800:ASP:OD1	1:E:801:THR:N	2.44	0.51
1:J:481:PHE:CD1	1:J:509:VAL:HG21	2.45	0.51
1:D:125:LYS:NZ	1:D:192:ASP:OD2	2.41	0.51
1:F:815:ASP:OD1	1:F:815:ASP:N	2.44	0.51
1:G:621:TYR:CZ	1:G:625:ILE:HD11	2.46	0.51
1:I:309:ASN:O	1:I:622:ASN:ND2	2.39	0.51
2:P:357:ASP:OD2	2:P:361:ARG:NE	2.43	0.51
1:G:367:ILE:HG22	1:G:369:SER:H	1.76	0.51
1:E:682:GLU:OE1	1:E:685:ARG:NH1	2.44	0.51
1:B:432:VAL:HG12	1:C:887:LEU:HD22	1.91	0.51
1:C:728:VAL:HG23	1:C:807:TYR:O	2.10	0.51
1:D:517:LEU:CD1	1:D:543:LEU:HD23	2.41	0.51
1:J:92:GLU:OE2	1:J:94:GLN:NE2	2.40	0.50
1:H:277:ILE:HD11	1:H:299:LEU:HD11	1.94	0.50
1:E:202:ASP:OD2	1:E:236:ARG:NH1	2.44	0.50
1:A:601:ILE:HD11	1:A:869:THR:CG2	2.41	0.50
1:B:336:ALA:O	1:B:340:VAL:HG23	2.11	0.50
1:F:358:GLN:O	1:F:361:GLN:NE2	2.38	0.50
1:G:352:GLN:NE2	1:G:593:MET:O	2.40	0.50
1:H:621:TYR:CZ	1:H:625:ILE:HD11	2.47	0.50
1:J:621:TYR:CZ	1:J:625:ILE:HD11	2.46	0.50
1:J:815:ASP:OD1	1:J:815:ASP:N	2.44	0.49
1:A:397:ARG:NH2	1:A:579:THR:OG1	2.44	0.49
1:B:660:ASP:OD2	1:B:662:SER:OG	2.30	0.49

Atom 1	Atom_9	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:871:GLU:HG3	1:B:873:ILE:HG22	1.94	0.49
1:A:356:MET:HG2	1:A:542:LEU:HD22	1.94	0.49
1:J:360:LEU:HD12	1:J:374:LEU:HD21	1.95	0.49
2:P:194:GLU:N	2:P:194:GLU:OE1	2.46	0.49
1:E:740:ILE:HD12	1:E:764:VAL:HG21	1.93	0.49
1:I:723:GLU:OE1	1:I:723:GLU:N	2.42	0.49
1:F:718:GLN:HA	1:F:827:THR:HG22	1.95	0.49
1:A:420:VAL:HG23	1:A:421:VAL:HG23	1.94	0.49
1:J:140:VAL:HG11	1:J:152:ARG:HD2	1.94	0.49
1:A:786:ASP:OD2	1:A:828:SER:OG	2.31	0.49
1:G:214:ILE:HG21	1:G:251:ILE:HG21	1.95	0.49
2:P:717:TYR:OH	2:P:770:ASP:OD2	2.21	0.49
2:P:1023:LYS:NZ	2:P:1058:TYR:O	2.37	0.49
1:C:188:LEU:HD23	1:C:264:LEU:CD2	2.42	0.48
1:E:505:ARG:NH2	1:E:562:GLU:OE1	2.45	0.48
1:G:546:ARG:NH1	1:G:592:CYS:O	2.46	0.48
1:B:728:VAL:HG23	1:B:807:TYR:O	2.13	0.48
1:D:309:ASN:O	1:D:622:ASN:ND2	2.43	0.48
1:F:230:ARG:NH1	1:F:234:GLU:OE2	2.47	0.48
1:I:174:LEU:HD22	1:I:640:LEU:CD1	2.43	0.48
1:I:728:VAL:CG2	1:I:806:LEU:HD11	2.42	0.48
1:E:621:TYR:CZ	1:E:625:ILE:HD11	2.49	0.48
1:F:517:LEU:HB2	1:F:540:ILE:HG23	1.94	0.48
1:G:335:LEU:O	1:G:338:SER:OG	2.30	0.48
1:D:403:PHE:CB	1:D:585:LEU:HD12	2.43	0.48
1:A:294:ASN:OD1	1:A:295:MET:N	2.46	0.48
1:A:723:GLU:OE2	1:A:839:GLN:NE2	2.46	0.48
1:B:786:ASP:OD2	1:B:828:SER:OG	2.31	0.48
1:C:195:VAL:HG21	1:C:209:SER:HA	1.96	0.48
1:C:188:LEU:HD23	1:C:264:LEU:HG	1.96	0.48
1:G:281:ILE:HD13	1:G:293:LEU:HD13	1.96	0.47
2:P:930:ILE:N	2:P:984:ASP:OD2	2.45	0.47
1:C:778:VAL:HG22	1:C:809:ILE:HG23	1.96	0.47
2:P:591:SER:HA	2:P:596:THR:HG21	1.96	0.47
1:H:718:GLN:HA	1:H:827:THR:HG22	1.95	0.47
1:C:621:TYR:CZ	1:C:625:ILE:HD11	2.50	0.47
1:C:786:ASP:OD2	1:C:828:SER:OG	2.32	0.47
1:J:122:GLN:OE1	1:J:123:VAL:N	2.47	0.47
1:A:541:LEU:HD13	1:E:528:MET:HE1	1.96	0.47
1:C:728:VAL:HG22	1:C:730:ILE:HG12	1.95	0.47
1:D:621:TYR:CZ	1:D:625:ILE:HD11	2.50	0.47

Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
1:I:311:LEU:O	1:I:618:HIS:NE2	2.41	0.47
1:I:353:ILE:HD11	1:I:377:ILE:HB	1.96	0.47
2:P:145:VAL:HG11	2:P:170:PHE:CD1	2.49	0.47
1:E:403:PHE:HB3	1:E:585:LEU:HD12	1.97	0.47
1:J:412:ILE:HG22	1:J:543:LEU:HD22	1.96	0.47
2:P:646:GLN:NE2	2:P:650:ASP:OD1	2.47	0.47
1:E:363:GLU:O	2:P:983:GLN:NE2	2.48	0.46
1:C:420:VAL:HG23	1:C:421:VAL:HG23	1.97	0.46
1:C:660:ASP:OD2	1:C:662:SER:OG	2.34	0.46
1:C:403:PHE:CB	1:C:585:LEU:HD12	2.46	0.46
1:D:786:ASP:OD2	1:D:828:SER:OG	2.33	0.46
1:C:467:GLU:OE2	1:C:480:HIS:ND1	2.40	0.46
1:F:367:ILE:HG22	1:F:369:SER:H	1.81	0.46
1:D:428:ARG:HG2	1:I:530:VAL:HG11	1.97	0.46
1:I:746:MET:SD	1:I:747:ARG:NH1	2.89	0.46
1:D:154:TYR:OH	1:D:723:GLU:OE2	2.33	0.46
2:P:745:THR:HG22	2:P:746:GLY:H	1.81	0.46
1:A:853:LEU:HD23	1:J:667:ASP:HA	1.98	0.45
1:F:751:TYR:O	1:F:755:THR:OG1	2.22	0.45
1:G:519:GLN:OE1	1:G:522:ARG:NH2	2.47	0.45
1:D:577:THR:OG1	1:D:579:THR:O	2.29	0.45
1:H:174:LEU:HD22	1:H:640:LEU:CD1	2.47	0.45
1:D:778:VAL:HG22	1:D:809:ILE:HG23	1.97	0.45
1:A:296:ASP:OD2	1:J:582:LYS:NZ	2.49	0.45
1:A:403:PHE:HB3	1:A:585:LEU:HD12	1.99	0.45
2:P:387:GLN:NE2	2:P:551:ASP:OD2	2.46	0.45
2:P:575:ILE:HD12	2:P:584:ILE:HD12	1.97	0.45
1:A:728:VAL:HG23	1:A:807:TYR:O	2.17	0.45
1:F:311:LEU:O	1:F:618:HIS:NE2	2.47	0.45
1:F:755:THR:HG23	1:F:794:VAL:HG13	1.97	0.45
2:P:542:LEU:HD11	2:P:561:TYR:HD1	1.82	0.45
1:B:703:SER:O	1:B:834:LYS:NZ	2.45	0.45
1:D:764:VAL:HG22	1:D:765:ALA:N	2.31	0.45
1:I:187:TYR:C	1:I:188:LEU:HD12	2.37	0.45
1:J:177:TYR:CZ	1:J:181:LEU:HD11	2.51	0.45
2:P:75:LEU:HD22	2:P:748:LEU:HD11	1.97	0.45
1:D:467:GLU:OE1	1:D:483:ASN:ND2	2.45	0.45
1:C:481:PHE:CZ	1:C:509:VAL:HG11	2.52	0.44
1:A:185:PRO:O	1:A:684:ARG:NH2	2.50	0.44
1:I:214:ILE:HG21	1:I:251:ILE:HG21	1.99	0.44
1:D:360:LEU:HD21	1:D:542:LEU:HD11	1.98	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:703:SER:O	1:E:834:LYS:NZ	2.51	0.44
1:H:728:VAL:CG2	1:H:806:LEU:HD11	2.48	0.44
2:P:86:GLU:O	2:P:90:VAL:HG13	2.17	0.44
1:E:517:LEU:CD1	1:E:543:LEU:HD23	2.47	0.44
1:F:718:GLN:HG2	1:F:825:VAL:HG11	1.99	0.44
1:G:187:TYR:C	1:G:188:LEU:HD12	2.38	0.44
1:H:277:ILE:CD1	1:H:299:LEU:HD11	2.47	0.44
1:A:403:PHE:CB	1:A:585:LEU:HD12	2.47	0.44
1:C:353:ILE:HD11	1:C:377:ILE:HB	1.99	0.44
1:E:428:ARG:HG2	1:J:530:VAL:HG21	2.00	0.44
1:G:825:VAL:O	1:G:827:THR:HG23	2.17	0.44
1:I:531:ASP:N	1:I:531:ASP:OD1	2.51	0.44
1:J:800:ASP:N	1:J:800:ASP:OD1	2.50	0.44
1:B:740:ILE:HD12	1:B:764:VAL:HG21	2.00	0.44
1:G:408:TYR:OH	1:G:535:SER:OG	2.35	0.44
1:F:174:LEU:HD22	1:F:640:LEU:HD12	2.00	0.44
1:D:853:LEU:HD23	1:H:667:ASP:HA	2.00	0.43
1:J:214:ILE:HG21	1:J:251:ILE:HG21	2.00	0.43
1:A:309:ASN:O	1:A:622:ASN:ND2	2.46	0.43
1:D:624:ARG:HD2	1:D:655:ARG:HB3	2.00	0.43
1:E:871:GLU:HG3	1:E:873:ILE:HG22	1.99	0.43
1:G:386:PHE:CE1	1:G:557:LEU:HD12	2.54	0.43
1:H:649:VAL:HG13	1:H:672:LEU:HD23	2.00	0.43
1:I:517:LEU:HB2	1:I:540:ILE:HG23	1.99	0.43
1:D:755:THR:HG23	1:D:794:VAL:HG13	2.01	0.43
1:F:214:ILE:HG21	1:F:251:ILE:HG21	1.99	0.43
1:G:242:ASP:OD1	1:G:242:ASP:N	2.51	0.43
1:G:778:VAL:O	1:G:782:VAL:HG23	2.18	0.43
1:J:349:THR:HG23	1:J:377:ILE:O	2.18	0.43
1:A:755:THR:HG23	1:A:794:VAL:HG13	2.01	0.43
1:B:505:ARG:NH2	1:B:562:GLU:OE1	2.47	0.43
2:P:613:SER:O	2:P:616:SER:OG	2.35	0.43
1:E:353:ILE:HG13	2:P:974:THR:HG23	2.00	0.43
1:E:517:LEU:HD13	1:E:543:LEU:HD23	2.01	0.43
1:I:412:ILE:HG22	1:I:543:LEU:HD22	1.99	0.43
1:I:513:LEU:O	1:I:517:LEU:HG	2.19	0.43
1:J:174:LEU:HD22	1:J:640:LEU:CD1	2.48	0.43
2:P:374:MET:SD	2:P:602:ILE:HD11	2.58	0.43
1:A:272:LEU:HD11	1:A:277:ILE:HG13	2.01	0.43
1:B:734:LEU:HD21	1:B:833:TYR:CG	2.53	0.43
1:I:764:VAL:HG22	1:I:765:ALA:N	2.33	0.43

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:P:145:VAL:CG2	2:P:211:ILE:HG23	2.49	0.43
1:F:420:VAL:HG23	1:F:421:VAL:HG23	2.00	0.43
1:G:691:LEU:O	1:G:695:ASN:ND2	2.52	0.43
2:P:184:ARG:H	2:P:195:VAL:HG21	1.83	0.43
2:P:319:PHE:N	2:P:320:PRO:HD2	2.33	0.43
1:F:277:ILE:CD1	1:F:299:LEU:HD11	2.49	0.43
1:G:420:VAL:HG23	1:G:421:VAL:HG23	2.00	0.43
1:H:510:VAL:HB	1:H:551:VAL:HG22	2.01	0.43
1:I:825:VAL:O	1:I:827:THR:HG23	2.19	0.43
1:J:621:TYR:CE2	1:J:625:ILE:HD11	2.54	0.43
1:A:764:VAL:HG22	1:A:765:ALA:H	1.84	0.42
1:G:723:GLU:OE1	1:G:723:GLU:N	2.50	0.42
2:P:337:GLN:O	2:P:451:ARG:NH1	2.46	0.42
1:A:604:PRO:HB2	1:A:867:ALA:HB3	2.01	0.42
1:A:624:ARG:HD2	1:A:655:ARG:HB3	2.01	0.42
1:A:682:GLU:OE1	1:A:685:ARG:NH1	2.52	0.42
1:B:108:LYS:HG3	1:B:334:ILE:HD12	2.01	0.42
1:D:728:VAL:HG23	1:D:807:TYR:O	2.19	0.42
1:F:740:ILE:HD12	1:F:764:VAL:HG21	2.01	0.42
1:H:186:ASP:OD2	1:H:186:ASP:N	2.51	0.42
1:E:621:TYR:CE2	1:E:625:ILE:HD11	2.54	0.42
1:F:424:ASP:OD1	1:F:424:ASP:N	2.52	0.42
1:E:329:THR:HG21	1:E:577:THR:HG21	2.01	0.42
1:E:449:MET:SD	1:E:470:ILE:HD13	2.59	0.42
1:E:353:ILE:HG23	1:E:374:LEU:HD23	2.02	0.42
1:H:214:ILE:HG21	1:H:251:ILE:HG21	2.01	0.42
1:H:517:LEU:CD1	1:H:543:LEU:HD23	2.49	0.42
2:P:426:ASP:OD2	2:P:432:ARG:NH2	2.51	0.42
1:B:764:VAL:HG22	1:B:765:ALA:H	1.84	0.42
1:J:531:ASP:OD1	1:J:531:ASP:N	2.52	0.42
2:P:531:THR:H	2:P:531:THR:HG1	1.62	0.42
1:D:605:GLN:NE2	1:D:867:ALA:O	2.50	0.42
1:I:539:GLY:HA2	1:I:542:LEU:HD12	2.02	0.42
1:B:624:ARG:HD2	1:B:655:ARG:HB3	2.02	0.42
1:F:170:ARG:NE	1:F:638:LEU:O	2.52	0.42
1:H:123:VAL:HG22	1:H:306:ILE:HD12	2.01	0.42
1:I:277:ILE:CD1	1:I:299:LEU:HD11	2.50	0.42
1:I:501:ASN:OD1	1:I:502:ASP:N	2.53	0.42
1:A:740:ILE:HD12	1:A:764:VAL:HG21	2.01	0.42
1:C:294:ASN:OD1	1:C:295:MET:N	2.52	0.42
1:D:781:LEU:HD13	1:D:807:TYR:CD2	2.54	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:871:GLU:HG3	1:D:873:ILE:HG22	2.01	0.42
1:G:879:ASP:OD1	1:G:879:ASP:N	2.51	0.42
1:J:164:ASP:OD1	1:J:164:ASP:N	2.42	0.42
1:B:175:ASN:OD1	1:B:179:GLN:NE2	2.49	0.42
1:D:728:VAL:HG22	1:D:730:ILE:HG13	2.02	0.42
1:F:645:MET:SD	1:F:645:MET:N	2.93	0.42
2:P:35:GLU:OE2	2:P:866:THR:HG22	2.19	0.42
1:A:601:ILE:HD11	1:A:869:THR:HG21	2.01	0.41
1:B:365:LEU:HD13	1:C:365:LEU:HG	2.00	0.41
1:J:600:VAL:O	1:J:600:VAL:HG23	2.20	0.41
2:P:878:LEU:HD22	2:P:1036:TYR:CD1	2.55	0.41
1:A:281:ILE:HD13	1:A:293:LEU:HD13	2.02	0.41
1:C:624:ARG:HD2	1:C:655:ARG:HB3	2.02	0.41
1:D:420:VAL:HG23	1:D:421:VAL:HG23	2.02	0.41
1:E:654:LYS:HG3	1:E:661:ILE:HD13	2.03	0.41
1:G:531:ASP:OD1	1:G:531:ASP:N	2.50	0.41
2:P:38:CYS:SG	2:P:65:VAL:HG13	2.60	0.41
1:A:783:ALA:HB3	1:A:785:LEU:HD13	2.02	0.41
1:B:131:ARG:NH2	1:B:211:THR:OG1	2.52	0.41
1:B:188:LEU:HD11	1:B:264:LEU:HD23	2.02	0.41
1:D:467:GLU:OE2	1:D:480:HIS:ND1	2.42	0.41
1:E:343:LEU:HB3	1:E:346:LEU:HD21	2.00	0.41
1:G:164:ASP:OD1	1:G:164:ASP:N	2.53	0.41
1:J:207:VAL:HA	1:J:208:ASP:HA	1.88	0.41
1:D:188:LEU:HD22	1:D:264:LEU:HD21	2.02	0.41
1:D:273:ASN:ND2	1:D:276:ILE:HD12	2.35	0.41
1:H:335:LEU:CD1	1:H:613:VAL:HG11	2.51	0.41
1:I:693:LEU:HD12	1:I:696:MET:SD	2.61	0.41
1:C:141:TYR:N	1:C:723:GLU:O	2.51	0.41
1:J:219:PHE:O	1:J:229:ARG:NH1	2.51	0.41
1:B:296:ASP:OD1	1:B:296:ASP:N	2.48	0.41
1:H:764:VAL:HG22	1:H:765:ALA:N	2.35	0.41
1:J:429:GLU:OE1	1:J:429:GLU:N	2.53	0.41
1:A:600:VAL:HG23	1:A:600:VAL:O	2.21	0.41
1:A:764:VAL:HG22	1:A:765:ALA:N	2.36	0.41
1:E:356:MET:HG2	1:E:542:LEU:HD22	2.03	0.41
1:G:806:LEU:HD13	1:G:832:VAL:HB	2.02	0.41
1:I:505:ARG:NH2	1:I:562:GLU:OE1	2.46	0.41
1:F:403:PHE:HB3	1:F:585:LEU:HD12	2.01	0.41
1:J:532:TYR:CE2	1:J:536:ILE:HD11	2.56	0.41
1:C:449:MET:SD	1:C:470:ILE:HD13	2.61	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:188:LEU:HD12	1:G:188:LEU:N	2.36	0.41
1:I:186:ASP:N	1:I:186:ASP:OD1	2.53	0.41
1:J:517:LEU:HD11	1:J:543:LEU:HD23	2.03	0.41
1:C:764:VAL:HG22	1:C:765:ALA:N	2.35	0.41
1:B:428:ARG:HG2	1:G:530:VAL:HG11	2.02	0.40
1:B:853:LEU:HD23	1:F:667:ASP:HA	2.01	0.40
1:E:653:LEU:HD23	1:E:656:LEU:HD12	2.03	0.40
1:F:513:LEU:O	1:F:517:LEU:HG	2.20	0.40
1:F:723:GLU:OE1	1:F:723:GLU:N	2.49	0.40
1:G:728:VAL:CG2	1:G:806:LEU:HD11	2.50	0.40
2:P:77:TYR:CE1	2:P:748:LEU:HD13	2.56	0.40
2:P:123:GLU:OE1	2:P:123:GLU:N	2.48	0.40
1:A:273:ASN:OD1	1:A:276:ILE:HD12	2.21	0.40
1:B:621:TYR:CE2	1:B:625:ILE:HD11	2.57	0.40
1:C:115:LEU:HD23	1:C:335:LEU:HB2	2.01	0.40
1:C:403:PHE:HB3	1:C:585:LEU:HD12	2.04	0.40
1:E:728:VAL:HG22	1:E:730:ILE:HG13	2.02	0.40
1:J:277:ILE:CD1	1:J:299:LEU:HD11	2.50	0.40
1:J:335:LEU:O	1:J:338:SER:OG	2.33	0.40
2:P:1084:ASN:ND2	2:P:1086:PHE:O	2.54	0.40
1:B:236:ARG:NH2	1:B:237:GLN:O	2.53	0.40
2:P:542:LEU:HD11	2:P:561:TYR:CD1	2.56	0.40
1:B:481:PHE:CZ	1:B:509:VAL:HG11	2.56	0.40
1:C:734:LEU:HD21	1:C:833:TYR:CG	2.56	0.40
1:E:294:ASN:OD1	1:E:295:MET:N	2.55	0.40
1:E:360:LEU:HD21	1:E:542:LEU:HD11	2.02	0.40
1:J:624:ARG:HD2	1:J:655:ARG:HB3	2.04	0.40
1:F:231:PHE:O	1:F:235:MET:N	2.51	0.40
1:G:277:ILE:HD11	1:G:299:LEU:HD11	2.03	0.40
1:H:358:GLN:O	1:H:361:GLN:NE2	2.54	0.40
1:H:412:ILE:CG2	1:H:543:LEU:HD22	2.47	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percen	ntiles
1	А	780/887~(88%)	767~(98%)	13~(2%)	0	100	100
1	В	779/887~(88%)	767~(98%)	12 (2%)	0	100	100
1	С	801/887~(90%)	787~(98%)	14 (2%)	0	100	100
1	D	825/887~(93%)	811 (98%)	13~(2%)	1 (0%)	48	67
1	Е	793/887~(89%)	782~(99%)	11 (1%)	0	100	100
1	F	803/887~(90%)	789~(98%)	14 (2%)	0	100	100
1	G	802/887~(90%)	789~(98%)	13 (2%)	0	100	100
1	Н	803/887~(90%)	790~(98%)	13~(2%)	0	100	100
1	Ι	797/887~(90%)	787~(99%)	10 (1%)	0	100	100
1	J	814/887~(92%)	800~(98%)	14 (2%)	0	100	100
2	Р	1084/1088~(100%)	1054 (97%)	30 (3%)	0	100	100
All	All	9081/9958~(91%)	8923 (98%)	157 (2%)	1 (0%)	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	105	PHE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	718/818~(88%)	715 (100%)	3~(0%)	89 95
1	В	717/818~(88%)	712~(99%)	5 (1%)	81 90
1	С	739/818~(90%)	733~(99%)	6 (1%)	79 89
1	D	762/818~(93%)	759 (100%)	3~(0%)	89 95
1	Ε	731/818~(89%)	727 (100%)	4 (0%)	86 94
1	F	741/818~(91%)	732 (99%)	9 (1%)	67 82

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	G	740/818~(90%)	735~(99%)	5 (1%)	81	90
1	Н	741/818~(91%)	737 (100%)	4 (0%)	86	94
1	Ι	735/818~(90%)	731 (100%)	4 (0%)	86	94
1	J	752/818~(92%)	748 (100%)	4 (0%)	86	94
2	Р	987/989~(100%)	978~(99%)	9 (1%)	75	87
All	All	8363/9169~(91%)	8307~(99%)	56 (1%)	80	90

Continued from previous page...

All (56) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	238	ARG
1	А	278	PHE
1	А	843	ARG
1	В	238	ARG
1	В	278	PHE
1	В	574	HIS
1	В	666	ASP
1	В	843	ARG
1	С	238	ARG
1	С	278	PHE
1	С	423	ASN
1	С	545	ASN
1	С	666	ASP
1	С	843	ARG
1	D	238	ARG
1	D	667	ASP
1	D	843	ARG
1	Е	125	LYS
1	Е	278	PHE
1	Е	665	PRO
1	Е	667	ASP
1	F	100	LYS
1	F	342	ASP
1	F	368	GLN
1	F	488	ARG
1	F	502	ASP
1	F	582	LYS
1	F	684	ARG
1	F	733	ASN
1	F	747	ARG

Mol	Chain	Res	Type
1	G	142	ARG
1	G	502	ASP
1	G	535	SER
1	G	582	LYS
1	G	747	ARG
1	Н	142	ARG
1	Н	342	ASP
1	Н	645	MET
1	Н	666	ASP
1	Ι	92	GLU
1	Ι	359	ASP
1	Ι	363	GLU
1	Ι	815	ASP
1	J	142	ARG
1	J	684	ARG
1	J	747	ARG
1	J	803	LYS
2	Р	341	ASP
2	Р	525	ASP
2	Р	665	LYS
2	Р	717	TYR
2	Р	871	LYS
2	Р	880	ASP
2	Р	895	GLN
2	Р	984	ASP
2	Р	1075	SER

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. There are no such side chains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-45123. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

6.5 Orthogonal surface views (i)

This section was not generated.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

