

May 4, 2025 – 04:36 PM EDT

PDB ID	:	$8 \mathrm{SHT} \ / \ \mathrm{pdb} \ 00008 \mathrm{sht}$
EMDB ID	:	EMD-40494
Title	:	CCT G beta 5 complex closed state 14
Authors	:	Wang, S.; Sass, M.; Willardson, B.M.; Shen, P.S.
Deposited on	:	2023-04-14
Resolution	:	3.00 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev118
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4-5-2 with Phenix2.0rc1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.43.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	536	84%	16%
1	a	536	78%	21% •
2	В	526	84%	16%
2	b	526	83%	17%
3	D	520	84%	16%
3	d	520	83%	17%
4	Е	540	83%	16% •
4	е	540	81%	19%

Mol	Chain	Length		Quality of chain	
		201801			
5	G	528		77%	23%
5	g	528		82%	17% •
6	Н	528	•	18%	
6	h	528		19% •	
7	Q	538	<u> </u>	17%	
7	q	538	•	83%	16% •
8	Z	527		78%	21%
8	Z	527		81%	19%
9	Р	301	30%	16%	38%
10	Ν	395	42%	12%	46%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
13	AF3	А	603	-	-	Х	-
13	AF3	В	603	-	-	Х	-
13	AF3	D	603	-	-	Х	-
13	AF3	G	603	-	-	Х	-
13	AF3	Q	603	-	-	Х	-
13	AF3	a	603	-	-	Х	-
13	AF3	b	603	-	-	Х	-
13	AF3	d	603	-	-	Х	-
13	AF3	g	603	-	-	Х	-
13	AF3	Z	603	-	-	Х	-

2 Entry composition (i)

There are 14 unique types of molecules in this entry. The entry contains 68272 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called T-complex protein 1 subunit alpha.

Mol	Chain	Residues		At	AltConf	Trace			
1	А	536	Total 4069	C 2548	N 711	O 787	S 23	0	0
1	a	532	Total 4041	C 2533	N 707	0 778	S 23	0	0

• Molecule 2 is a protein called T-complex protein 1 subunit beta.

Mol	Chain	Residues		At		AltConf	Trace		
2	В	526	Total 3952	C 2473	N 696	0 764	S 19	0	0
2	b	525	Total 3943	C 2467	N 694	O 763	S 19	0	0

• Molecule 3 is a protein called T-complex protein 1 subunit delta.

Mol	Chain	Residues		At		AltConf	Trace		
2	Л	520	Total	С	Ν	Ο	\mathbf{S}	0	0
	D	520	3923	2453	683	764	23	0	0
3 d	d	520	Total	С	Ν	Ο	\mathbf{S}	0	0
	u	520	3917	2450	680	764	23		

• Molecule 4 is a protein called T-complex protein 1 subunit epsilon.

Mol	Chain	Residues		At	oms		AltConf	Trace	
4	Е	535	Total 4132	$\begin{array}{c} \mathrm{C} \\ 2590 \end{array}$	N 719	0 792	S 31	1	0
4	е	540	Total 4169	C 2610	N 724	0 804	S 31	1	0

• Molecule 5 is a protein called T-complex protein 1 subunit gamma.

Mol	Chain	Residues		At		AltConf	Trace		
5	5 G	526	Total	С	Ν	Ο	\mathbf{S}	0	0
5		520	4089	2548	726	785	30		
5 g	ď	593	Total	С	Ν	0	S	0	0
	g	525	4063	2532	719	782	30	0	U

• Molecule 6 is a protein called T-complex protein 1 subunit eta, N-terminally processed.

Mol	Chain	Residues		At		AltConf	Trace		
6	Ц	528	Total	С	Ν	Ο	\mathbf{S}	0	0
0 11	11	526	4054	2561	699	769	25	0	0
6	6 h	595	Total	С	Ν	0	S	0	0
0		525	4032	2548	696	763	25	0	

• Molecule 7 is a protein called T-complex protein 1 subunit theta.

Mol	Chain	Residues	Atoms				AltConf	Trace	
7	Q	538	Total 4086	C 2579	N 696	0 784	S 27	0	0
7	q	533	Total 4053	C 2558	N 690	0 778	S 27	0	0

• Molecule 8 is a protein called T-complex protein 1 subunit zeta.

Mol	Chain	Residues	Atoms				AltConf	Trace	
8	Z	525	Total 4022	C 2528	N 704	O 769	S 21	0	0
8	Z	527	Total 4033	C 2534	N 706	0 772	S 21	0	0

• Molecule 9 is a protein called Phosducin-like protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
9	Р	186	Total 1507	C 955	N 256	0 284	S 12	0	0

• Molecule 10 is a protein called Guanine nucleotide-binding protein subunit beta-5.

Mol	Chain	Residues	Atoms				AltConf	Trace	
10	Ν	214	Total 1656	C 1031	N 287	O 326	S 12	0	0

• Molecule 11 is ADENOSINE-5'-DIPHOSPHATE (CCD ID: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues		Ate	oms			AltConf
11	٨	1	Total	С	Ν	Ο	Р	0
	А	1	27	10	5	10	2	0
11	р	1	Total	С	Ν	Ο	Р	0
	В	1	27	10	5	10	2	0
11	р	1	Total	С	Ν	0	Р	0
	D	L	27	10	5	10	2	0
11	Б	1	Total	С	Ν	0	Р	0
	Ľ	L	27	10	5	10	2	0
11	С	1	Total	С	Ν	Ο	Р	0
	G	L	27	10	5	10	2	0
11	тт	1	Total	С	Ν	Ο	Р	0
	П	1	27	10	5	10	2	0
11	0	1	Total	С	Ν	Ο	Р	0
	Q	L	27	10	5	10	2	U
11	7	1	Total	С	Ν	0	Р	0
		L	27	10	5	10	2	0
11	0	1	Total	С	Ν	0	Р	0
	a	L	27	10	5	10	2	0
11	h	1	Total	С	Ν	0	Р	0
11	D	L	27	10	5	10	2	0
11	d	1	Total	С	Ν	0	Р	0
	u	L	27	10	5	10	2	0
11	0	1	Total	С	Ν	Ο	Р	0
	е	L	27	10	5	10	2	U
11	ď	1	Total	$\overline{\mathbf{C}}$	Ν	0	P	0
	8	1	27	10	5	10	2	U
11	h	1	Total	С	Ν	Ο	Р	0
11	11		27	10	5	10	2	U

Continued	from	previous	page
	J	1	1 5

Mol	Chain	Residues		At	\mathbf{oms}			AltConf
11	a	1	Total	С	Ν	0	Р	0
11	q	1	27	10	5	10	2	0
11 z	1	Total	С	Ν	Ο	Р	0	
	Z	L	27	10	5	10	2	0

• Molecule 12 is MAGNESIUM ION (CCD ID: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
12	А	1	Total Mg 1 1	0
12	В	1	Total Mg 1 1	0
12	D	1	Total Mg 1 1	0
12	Е	1	Total Mg 1 1	0
12	G	1	Total Mg 1 1	0
12	Н	1	Total Mg 1 1	0
12	Q	1	Total Mg 1 1	0
12	Ζ	1	Total Mg 1 1	0
12	a	1	Total Mg 1 1	0
12	b	1	Total Mg 1 1	0
12	d	1	Total Mg 1 1	0
12	е	1	Total Mg 1 1	0
12	g	1	Total Mg 1 1	0
12	h	1	Total Mg 1 1	0
12	q	1	Total Mg 1 1	0
12	Z	1	Total Mg 1 1	0

• Molecule 13 is ALUMINUM FLUORIDE (CCD ID: AF3) (formula: $\mathrm{AlF}_3).$

Mol	Chain	Residues	Atoms	AltConf
13	А	1	Total Al F 4 1 3	0
13	В	1	Total Al F 4 1 3	0
13	D	1	$\begin{array}{c cccc} \hline 1 & 1 & 0 \\ \hline Total & Al & F \\ 4 & 1 & 3 \\ \end{array}$	0
13	Е	1	$\begin{array}{c c} \hline Total & Al & F \\ \hline 4 & 1 & 3 \end{array}$	0
13	G	1	Total Al F 4 1 3	0
13	Н	1	Total Al F 4 1 3	0
13	Q	1	Total Al F 4 1 3	0
13	Ζ	1	TotalAlF413	0
13	a	1	TotalAlF413	0
13	b	1	TotalAlF413	0
13	d	1	TotalAlF413	0
13	е	1	TotalAlF413	0
13	g	1	Total Al F 4 1 3	0
13	h	1	Total Al F 4 1 3	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
12	a	1	Total Al F	0
15	q	T	4 1 3	0
12	7	1	Total Al F	0
15	Z	1	4 1 3	0

• Molecule 14 is water.

Mol	Chain	Residues	Atoms	AltConf
14	А	2	Total O 2 2	0
14	В	2	Total O 2 2	0
14	D	1	Total O 1 1	0
14	Е	1	Total O 1 1	0
14	G	1	Total O 1 1	0
14	Н	1	Total O 1 1	0
14	Q	1	Total O 1 1	0
14	Ζ	1	Total O 1 1	0
14	a	2	Total O 2 2	0
14	b	1	Total O 1 1	0
14	d	1	Total O 1 1	0
14	е	1	Total O 1 1	0
14	g	1	Total O 1 1	0
14	h	1	Total O 1 1	0
14	q	1	Total O 1 1	0
14	Z	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: T-complex protein 1 subunit alpha

81 68 K1 81 K1 84 K1 84 K2 03 K2 04 K2 03 K2 04 K2 05 K2

• Molecule 2: T-complex protein 1 subunit beta

Chain b:	83%	17%
A2 111 111 112 123 123 123 123 12	A59 N65 P79 V83 V83 V83 V83 V83 V83 A112 A112 A112 A112 A112 A112 A112 A11	D151 D151 K154 M160 A163 S168
8169 8170 8170 9187 9187 9193 6194 0195 11219 11219 11219 11219 11227 1227 1227	L205 K263 F271 E271 R267 N288 N288 A315 A315 L323 C325 C323 C326 C323 C326 C323 C325 C325 C325 C325 C325 C325 C325	A370 A372 C371 T372 L397 A399 Q399 D403
Y408 Y408 8413 8414 M417 M417 M417 M417 M417 M416 E432 E432 E432 E432 E432 E432 E436 E436 E436 E446 L4465 L4465 L4465	A501 E471 E471 E478 M480 M480 M480 E495 E495 E495 A510 A510 V513 V513 V513 V513 V519 V519 V519 V519 V519 V519 V519 V519	LYS
• Molecule 3: T-complex protein	1 subunit delta	
Chain D:	84%	16%
R19 26 26 26 83 138 445 445 445 445 445 655 655 655	1169 171 171 171 171 171 171 192 198 198 198 198 198 192 1107 1107 1121 1121 1121 1121 1121 112	R153 P164 S170 S170 S173 S173 Y191 T195
V 203 V 203 V 203 V 203 E 226 C 226 C 226 C 226 C 226 C 266 C 266	L305 L305 L312 L312 L312 C337 C337 C337 P344 A346 A346 A346 A346 A346 A346 A346 A	1430 1431 1432 1432 1432 1432 1455 1455 1458
V460 1460 1480 1480 1480 1480 1480 1480 1504 1504 1504 1504 1504 1504 1504 1511 1504 1511 1504 1511 1504 1511 1504 1511 1504 1511 1504 1511 1504 1504	88	

• Molecule 4: T-complex protein 1 subunit epsilon

Chain g: 82% 17%

GLY HIS HIS ARG PRO VAL L8 K21 L8 K21 L8 N21 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	K48 K48 D62 D62 D62 D62 M74 K76 K77 K77 K77 K77 K78 K78 K78 K78 K78 K78	196 199 1100 11100 1130 1130 1130 1130 1130
N157 T161 M182 M182 M182 K197 K203 G205 G217 V218	K222 U223 V224 M229 M229 S243 S244 E246 E246 E246 E246 E246 E246 E246 E	M270 V289 T292 T292 K294 H302 H302 R323 R323 R323 R323 R339 R339 R339 R33
1352 1361 1361 1361 1363 1363 1363 1363 136	M435 P436 1447 1447 1448 1448 1448 1448 1448 1448	4604 4508 4508 4508 1510 1522 1522 1522 1522 1522
• Molecule 6: T-comple	ex protein 1 subunit eta, N-ter	minally processed
Chain H:	82%	18%
M1 M2 P3 P3 P3 P3 P3 P20 P20 P20 P20 P20 P20 P23 P20 P23 P20 P23 P20 P23 P20 P23 P23 P23 P23 P23 P33 P33 P33 P33 P33	132 132 133 133 138 138 138 138 138 138 170 170 170 170 170 170 182 182 182	992 1997 1997 1998 1998 1998 1014 1014 1136 1136 1136 1136 1136 1136
0151 R152 R152 L155 E156 M160 L167 L167 L167 A173 A173 V180	1181 1182 1183 1184 1184 1186 1187 1188 1188 1197	2242 2243 1244 1273 1273 1355 1353 1353 1353 1353 1353 1353 13
R375 1385 1385 1385 1385 1385 1385 1385 138	P 427 P 428 C 429 C 429 C 429 P 446 P 483 P 483	1484 F491 A502 A502 A509 A509 V516 V516 V528 ↓528
• Molecule 6: T-comple	ex protein 1 subunit eta, N-ter	minally processed
Chain h:	80%	19% •
HI H2 P5 P5 P5 C18 C18 C18 C18 C18 C18 C18 C18 C18 C18	030 132 133 133 133 133 138 138 147 148 148 148 148 157 157 168 169 168	H73 A76 A76 A76 A76 A76 A78 A83 A83 A83 A83 A94 C91 C92 C95 C97 C97 C97 C97 C97 C97 C97 C96 C97 C97 C97 C96 C97 C97 C97 C97 C97 C97 C97 C97 C97 C97
K106 V107 V109 K109 N112 R126 K144 K152 E156	M160 8165 1168 1168 1168 1168 1168 1187 1186 1187 1188 1188	G196 1197 V200 Q201 G202 G202 G202 C225 F225 F225 F225 F225 F225 F225 F22
D297 K320 M324 M324 B338 B338 B339 B339 C383 R325 R357 R357 C363	C364 A367 A367 T368 R375 R375 R375 R36 R36 R394 R394 R394 R398 R398 R398 R398 R398 R398 R398 R398	R425 A441 L442 L443 E443 E445 F446 R447 R447 R447 R465 R447 R465 R465 R465 R465 R465 R465 R465 R465
R499 A502 A509 A509 A509 A509 A509 THR THR A5P		
• Molecule 7: T-comple	ex protein 1 subunit theta	
Chain O:		
Chann Q.	83%	17%

• Molecule 7: T-complex protein 1 subunit theta

Chain q:	83%	16% •
A2 F11 M14	L125 V29 V30 V30 V31 133 L33 H55 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10	C136 A139 A139 A151 A151 A151 A151 A155 A155 D156 D156
1168 174 N175 1183	1190 F191 K206 G209 1212 K224 K224 V231 V231 K225 C247 V231 K226 1265 1265 1265 1265 1265 1265 1265 1	N288 V290 V290 1310 1310 1327 1327 1333 1333
D348 1358 E366	1372 1372 1372 1373 1333 1402 1403 1403 1403 1403 1403 1417 1403 1403 1405 1403 1405 1403 1405 1403 1407 1403 1407 1403 1407 1403 1407 1403 1407 1403 1407 1403 1407 1403 1407 1403 1407 1408	GS31 GS32 P533 KS34 P50 P50 P50 P50 C17 LVS LVS
• Molecu	ıle 8: T-complex protein 1 subunit zeta	
Chain Z:	78%	21%
Chain Z:	124 825 425 426 429 1230 1230 1230 1231 1247 126 126 126 126 126 126 126 126 126 126	1110 1136 1136 1158 1158 1158 1158 1158 1158 1158 115
Chain Z:	L188 F188 M196 M196 M196 M196 M196 M196 M196 M196	K264 1119 R264 1134 R270 1134 R270 1134 R270 1156 R288 1158 V290 1164 V290 1164 D166 D166
Chain Z: UII UII UII UII UII UII UII UI	H323 L188 L24 L326 N334 1191 225 H346 K199 033 H346 K199 033 H346 K199 033 H346 K199 V33 L375 H216 H40 L375 H218 M46 L375 H216 H40 L375 H218 M46 L375 H216 H40 L387 M21 K65 L395 M221 K65 D403 L230 H66 L47 Y33 L47 M41 Y339 L64 V414 Y339 H66 M43 L240 H61 M43 K34 L64	L445 K261 1113 V450 R270 8136 V450 R270 8136 V450 R270 8136 V450 R270 8136 V455 R287 1134 V456 R288 1158 L455 R288 1158 L463 V290 1164 V291 D166 D166

• Molecule 8: T-complex protein 1 subunit zeta

M526 S527

• Molecule 9: Phosducin-like protein

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	33752	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40.42	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	1200	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	1.086	Depositor
Minimum map value	-0.393	Depositor
Average map value	0.004	Depositor
Map value standard deviation	0.052	Depositor
Recommended contour level	0.129	Depositor
Map size (Å)	317.4, 317.4, 317.4	wwPDB
Map dimensions	300, 300, 300	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.058, 1.058, 1.058	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: AF3, MG, ADP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
INIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.12	0/4109	0.26	0/5548
1	a	0.13	0/4081	0.25	0/5510
2	В	0.13	0/3995	0.25	0/5386
2	b	0.13	0/3986	0.25	0/5375
3	D	0.13	0/3955	0.25	0/5338
3	d	0.13	0/3949	0.25	0/5331
4	Е	0.13	0/4183	0.28	0/5635
4	е	0.13	0/4220	0.25	0/5684
5	G	0.13	0/4136	0.25	0/5579
5	g	0.12	0/4108	0.24	0/5539
6	Н	0.13	0/4111	0.26	0/5550
6	h	0.13	0/4089	0.26	0/5519
7	Q	0.12	0/4147	0.25	0/5606
7	q	0.12	0/4112	0.25	0/5558
8	Ζ	0.13	0/4069	0.25	0/5486
8	Z	0.13	0/4080	0.26	0/5501
9	Р	0.11	0/1521	0.33	0/2024
10	Ν	0.10	0/1689	0.31	0/2280
All	All	0.13	0/68540	0.26	0/92449

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4069	0	4224	54	0
1	a	4041	0	4205	77	0
2	В	3952	0	4070	58	0
2	b	3943	0	4057	66	0
3	D	3923	0	4131	54	0
3	d	3917	0	4120	61	0
4	Ε	4132	0	4246	65	0
4	е	4169	0	4272	78	0
5	G	4089	0	4224	80	0
5	g	4063	0	4201	60	0
6	Н	4054	0	4160	65	0
6	h	4032	0	4140	67	0
7	Q	4086	0	4160	61	0
7	q	4053	0	4125	58	0
8	Ζ	4022	0	4161	72	0
8	Z	4033	0	4171	64	0
9	Р	1507	0	1495	35	0
10	Ν	1656	0	1566	35	0
11	А	27	0	12	1	0
11	В	27	0	12	3	0
11	D	27	0	12	1	0
11	Ε	27	0	12	0	0
11	G	27	0	12	2	0
11	Н	27	0	12	0	0
11	Q	27	0	12	2	0
11	Ζ	27	0	12	1	0
11	a	27	0	12	3	0
11	b	27	0	12	3	0
11	d	27	0	12	2	0
11	е	27	0	12	1	0
11	g	27	0	12	3	0
11	h	27	0	12	2	0
11	q	27	0	12	3	0
11	Z	27	0	12	2	0
12	A	1	0	0	0	0
12	В	1	0	0	0	0
12	D	1	0	0	0	0
12	Е	1	0	0	0	0
12	G	1	0	0	0	0
12	Н	1	0	0	0	0
12	Q	1	0	0	0	0

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
12	Z	1	0		0	
12	2	1	0	0	0	0
12 12	h	1	0	0	0	0
12	d	1	0	0	0	0
12	e u	1	0	0	0	0
12	or of the second	1	0	0	0	0
12	b b	1	0	0	0	0
12	п 0	1	0	0	0	0
12	Ч 7	1	0	0	0	0
13	A	4	0	0	2	0
13	R	4	0	0	3	0
13	D	4	0	0	3	0
13	E	4	0	0	1	0
13	C L		0	0	2	0
13	н Н	4	0	0	0	0
13	0		0	0	2	0
13	Z	4	0	0	1	0
13	2		0	0	2	0
13	a h	4	0	0	2	0
13	d d	4	0	0	2	0
13	e	- - 4	0	0	0	0
13	σ	4	0	0	3	0
13	b b	4	0	0	1	0
13	n 0	4	0	0	1	0
13	Ч 7	4	0	0	2	0
14	A	2	0	0	0	0
14	B	2	0	0	0	0
14	D	- 1	0	0	0	0
14	E	1	0	0	0	0
14	G	1	0	0	0	0
14	H	1	0	0	0	0
14	Q	1	0	0	0	0
14	Z	1	0	0	0	0
14	a	2	0	0	0	0
14	b	1	0	0	0	0
14	d	1	0	0	1	0
14	е	1	0	0	1	0
14	g	1	0	0	0	0
14	h	1	0	0	0	0
14	a	1	0	0	0	0
14	Z	1	0	0	0	0
All	All	68272	0	69920	1003	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (1003) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom_2	Interatomic	Clash
Atom-1	At0111-2	distance (Å)	overlap (Å)
1:A:23:MET:HE2	4:e:8:ALA:HA	1.63	0.79
6:h:22:LEU:HD22	6:h:112:VAL:HG11	1.64	0.79
2:B:517:VAL:HG21	4:E:60:MET:HE3	1.65	0.77
5:g:27:ILE:HD13	5:g:110:GLU:HB2	1.67	0.77
3:D:502:ASN:HD22	3:D:505:GLU:HG3	1.49	0.76
5:G:206:GLY:HA3	8:Z:87:ILE:HG13	1.67	0.76
5:g:48:LYS:HD3	8:z:522:MET:HE1	1.68	0.76
1:A:353:GLN:HE21	1:A:360:GLU:HB3	1.50	0.75
1:a:474:ALA:HB2	1:a:483:LEU:HB2	1.66	0.75
3:D:78:LEU:HB3	3:D:92:VAL:HG22	1.67	0.75
5:g:218:VAL:HG21	5:g:323:ILE:HG12	1.69	0.75
10:N:184:MET:HG3	10:N:185:ALA:H	1.51	0.74
8:Z:242:THR:HG22	8:Z:244:VAL:H	1.53	0.74
3:d:48:ILE:HD13	3:d:78:LEU:HD21	1.69	0.74
6:H:82:ILE:HG21	6:H:509:ALA:HB2	1.71	0.73
8:Z:189:PHE:O	8:Z:323:ARG:NH1	2.21	0.73
2:b:291:ILE:HD13	2:b:323:LEU:HD13	1.70	0.72
7:q:327:THR:HG22	7:q:372:ILE:HB	1.70	0.72
1:A:474:ALA:HB2	1:A:483:LEU:HB2	1.71	0.72
6:H:346:GLN:HB2	6:H:363:GLY:HA3	1.72	0.72
7:Q:253:THR:HG1	8:Z:239:TYR:HH	1.36	0.71
6:h:82:ILE:HG21	6:h:509:ALA:HB2	1.72	0.71
8:z:242:THR:HG22	8:z:244:VAL:H	1.55	0.71
10:N:282:SER:HG	10:N:300:SER:HG	1.38	0.70
3:d:78:LEU:HB3	3:d:92:VAL:HG22	1.73	0.70
2:B:39:VAL:HG22	2:B:100:THR:HG23	1.71	0.70
4:e:305:GLY:HA2	4:e:323:ARG:HB2	1.72	0.70
4:E:364:PHE:HE2	4:E:371:MET:HG3	1.57	0.69
4:e:415:ASP:HB3	4:e:511:ILE:HD11	1.74	0.69
2:B:63:VAL:HG12	2:B:381:GLN:HB3	1.75	0.69
6:H:335:ASN:ND2	7:Q:273:GLU:OE2	2.26	0.69
1:a:164:ASN:ND2	1:a:206:MET:SD	2.65	0.69
5:G:302:HIS:HB2	8:Z:334:ASN:HB2	1.75	0.68
5:G:132:ASP:OD2	5:G:437:TYR:OH	2.09	0.68
5:g:35:ASP:OD1	5:g:38:ARG:NH1	2.26	0.68
6:H:187:ASP:HB3	6:H:368:LYS:HD2	1.75	0.68
8:Z:218:HIS:HB3	8:Z:221:MET:HE2	1.76	0.68

	jue page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:a:34:SER:OG	1:a:43:LYS:NZ	2.24	0.68
5:G:35:ASP:OD1	5:G:38:ARG:NH1	2.26	0.68
5:G:289:VAL:HG11	5:G:350:LEU:HD13	1.74	0.68
8:z:210:LEU:HD21	8:z:323:ARG:HB3	1.76	0.67
7:Q:73:LEU:HD13	7:Q:87:VAL:HG22	1.76	0.67
2:b:251:ILE:HG13	4:e:277:LEU:HD11	1.77	0.67
4:e:200:GLU:HG2	4:e:202:ARG:HG3	1.76	0.67
1:a:384:MET:O	1:a:388:MET:HG3	1.95	0.67
6:h:38:THR:OG1	6:h:47:LYS:NZ	2.24	0.67
5:G:289:VAL:HG12	5:G:310:THR:HB	1.77	0.67
6:H:38:THR:OG1	6:H:47:LYS:NZ	2.26	0.67
6:H:157:LYS:HG2	6:H:491:PHE:HB3	1.77	0.67
10:N:297:ALA:HB2	10:N:307:LEU:HD12	1.75	0.67
7:q:40:ALA:HA	7:q:105:LEU:HD21	1.76	0.66
8:z:24:ILE:HD13	8:z:107:ASP:HB2	1.78	0.66
2:b:112:GLU:HB3	2:b:438:SER:HB3	1.78	0.66
2:b:95:VAL:HG12	2:b:399:GLN:HG3	1.78	0.66
1:a:78:LEU:HD11	1:a:516:PHE:HB3	1.78	0.66
8:Z:216:ALA:HB1	8:Z:221:MET:HE3	1.76	0.66
8:Z:154:THR:HG21	8:Z:495:TRP:H	1.61	0.66
1:A:47:ASP:HB2	1:A:51:ASP:HB2	1.77	0.65
8:z:264:ARG:NH2	8:z:298:ASP:OD2	2.27	0.65
9:P:86:ARG:HG3	9:P:88:ILE:H	1.61	0.65
6:h:57:THR:HG21	6:h:68:LEU:HG	1.78	0.65
1:A:526:ARG:NH2	3:D:58:ASP:OD1	2.30	0.65
1:A:349:GLU:HB2	1:A:366:ASN:HB2	1.79	0.65
2:B:112:GLU:HB3	2:B:438:SER:HB3	1.79	0.65
5:G:82:GLU:OE1	5:G:85:ARG:NH2	2.28	0.65
1:a:217:ASN:HD22	9:P:287:ASN:HB2	1.61	0.64
3:d:195:ILE:HG21	3:d:203:VAL:HG22	1.79	0.64
8:z:31:GLN:O	8:z:35:ARG:HG3	1.97	0.64
3:d:423:ALA:HB1	3:d:503:ILE:HD11	1.78	0.64
4:E:305:GLY:HA2	4:E:323:ARG:HB2	1.78	0.64
4:e:38:ILE:HD13	4:e:121:GLU:HB2	1.80	0.64
1:a:229:ILE:HG12	1:a:306:MET:HE3	1.79	0.64
4:e:145:ILE:HG23	4:e:514:LYS:HD2	1.79	0.64
5:g:292:THR:HG22	5:g:294:LYS:H	1.62	0.64
4:e:230:VAL:HG12	4:e:232:LYS:H	1.61	0.63
5:g:302:HIS:HB2	8:z:334:ASN:HB2	1.80	0.63
7:q:70:ALA:HB2	7:q:101:THR:HG21	1.79	0.63
4:E:10:ASP:OD2	4:E:14:ARG:N	2.30	0.63

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:H:516:VAL:HG21	7:Q:55:MET:HE3	1.80	0.63
3:d:30:PRO:HB3	3:d:533:ASP:HB2	1.80	0.63
6:h:90:VAL:HG12	6:h:92:ASP:H	1.64	0.63
1:a:266:ARG:HG3	3:d:269:TYR:HB2	1.80	0.63
5:g:206:GLY:HA3	8:z:87:ILE:HG13	1.80	0.63
3:D:195:ILE:HG21	3:D:203:VAL:HG22	1.80	0.63
1:a:130:ARG:NH1	1:a:134:GLU:OE1	2.32	0.63
2:b:38:LEU:O	2:b:50:LYS:NZ	2.31	0.63
8:z:430:LYS:HA	8:z:430:LYS:HE3	1.80	0.63
5:G:31:LYS:HD3	5:G:107:SER:HB2	1.81	0.63
2:b:39:VAL:HG22	2:b:100:THR:HG23	1.81	0.63
2:B:19:GLU:OE2	2:B:522:LYS:NZ	2.31	0.62
4:E:456:GLU:OE2	4:E:478:ARG:NH1	2.32	0.62
5:G:129:ALA:O	5:G:133:MET:HG3	1.99	0.62
1:a:73:LYS:O	1:a:77:GLU:HG2	1.99	0.62
5:g:101:LEU:O	5:g:105:MET:HG3	1.99	0.62
1:A:164:ASN:ND2	1:A:206:MET:SD	2.72	0.62
5:G:32:THR:HG23	8:Z:3:ALA:HB1	1.81	0.62
1:A:354:GLU:HG3	1:A:363:LEU:HD12	1.81	0.62
2:B:38:LEU:O	2:B:50:LYS:NZ	2.30	0.62
5:g:130:LEU:HB2	5:g:510:VAL:HG11	1.82	0.62
4:E:10:ASP:OD2	4:E:13:GLY:N	2.31	0.62
3:d:273:ASP:OD2	3:d:277:ARG:NH2	2.31	0.62
2:B:59:ALA:O	3:D:89:ARG:NH2	2.33	0.61
1:A:353:GLN:O	5:G:190:ARG:NH1	2.33	0.61
4:E:367:THR:HG23	4:E:369:ASP:H	1.64	0.61
6:h:187:ASP:HB3	6:h:368:LYS:HD2	1.81	0.61
4:E:438:ASP:OD1	4:E:449:ARG:NH2	2.33	0.61
10:N:292:SER:OG	10:N:294:ASP:OD1	2.18	0.61
7:Q:412:GLY:HA3	7:Q:492:MET:HE1	1.83	0.61
10:N:280:HIS:HE2	10:N:306:ARG:HG2	1.65	0.61
2:B:278:LYS:O	2:B:282:ILE:HG13	2.01	0.61
2:B:413:SER:O	2:B:417:MET:HG3	2.01	0.61
7:Q:190:ILE:HG22	7:Q:191:PHE:H	1.65	0.60
10:N:334:SER:HB2	10:N:339:LEU:HB2	1.83	0.60
3:D:30:PRO:HB3	3:D:533:ASP:HB2	1.82	0.60
6:H:414:MET:HE1	6:H:461:LEU:HD13	1.81	0.60
7:Q:263:GLU:OE2	7:Q:267:ASN:ND2	2.34	0.60
3:d:415:LEU:HD13	3:d:511:PRO:HB3	1.81	0.60
1:a:526:ARG:HG3	3:d:175:VAL:HG23	1.84	0.60
4:e:533:ILE:HD13	6:h:48:LEU:HB3	1.82	0.60

	the page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:h:346:GLN:HB2	6:h:363:GLY:HA3	1.83	0.60
2:B:45:PRO:HG2	2:B:480:MET:HG3	1.83	0.60
1:A:44:MET:HE3	5:G:519:ILE:HD13	1.84	0.60
4:e:38:ILE:HG21	4:e:121:GLU:HB2	1.84	0.60
8:z:445:LEU:HD22	8:z:463:LEU:HD11	1.84	0.60
7:q:466:LYS:NZ	7:q:487:PRO:O	2.35	0.60
2:B:53:LEU:HD21	3:D:86:PRO:HG3	1.83	0.59
4:E:518:SER:O	4:E:522:GLN:HG2	2.02	0.59
2:b:326:VAL:HB	2:b:370:ALA:HB3	1.84	0.59
6:h:338:SER:OG	6:h:340:ASP:OD1	2.18	0.59
1:A:355:ARG:NH2	1:A:358:ASP:OD1	2.30	0.59
2:b:219:LEU:HB2	2:b:372:THR:HG21	1.84	0.59
4:e:102:ILE:HG22	4:e:104:ASP:H	1.68	0.59
5:g:64:ASN:HB2	5:g:95:THR:HG21	1.83	0.59
4:E:98:GLN:NE2	4:E:104:ASP:O	2.32	0.59
6:h:107:GLN:HG3	6:h:441:ALA:HB2	1.84	0.59
5:g:411:GLY:HA3	5:g:490:MET:HE3	1.83	0.59
3:D:32:GLN:HB3	2:b:6:LEU:HD23	1.85	0.59
4:E:184:GLN:NE2	4:E:222:THR:O	2.36	0.59
10:N:388:ASP:OD2	10:N:392:ARG:NH2	2.36	0.59
4:e:78:LEU:HB3	4:e:92:VAL:HG22	1.85	0.59
5:g:132:ASP:OD2	5:g:437:TYR:OH	2.14	0.59
5:g:468:ALA:O	5:g:471:THR:OG1	2.19	0.59
1:a:302:GLU:OE1	5:g:339:ARG:NH2	2.36	0.59
7:q:249:MET:HG3	8:z:260:VAL:HG11	1.85	0.59
2:B:137:ALA:HB1	2:B:417:MET:HB3	1.84	0.58
1:a:44:MET:HE2	5:g:519:ILE:HG21	1.83	0.58
6:h:8:LEU:HD22	7:q:38:GLU:HB3	1.85	0.58
8:z:161:HIS:ND1	8:z:162:ALA:N	2.50	0.58
5:G:183:VAL:HG21	5:G:199:ALA:HB2	1.85	0.58
8:Z:47:LEU:HD13	8:Z:66:GLU:HB2	1.85	0.58
8:Z:118:ILE:HG21	8:Z:432:ARG:HB2	1.85	0.58
6:h:34:GLU:HA	6:h:37:ARG:HG3	1.86	0.58
2:b:131:ARG:NH2	2:b:512:GLU:OE2	2.35	0.58
7:q:323:ARG:O	7:q:327:THR:HG23	2.03	0.58
2:B:168:SER:OG	11:B:601:ADP:N7	2.37	0.58
11:G:601:ADP:O2B	13:G:603:AF3:F1	2.12	0.58
6:H:152:ARG:NH2	6:H:181:ASP:OD1	2.36	0.58
7:Q:47:TYR:O	7:Q:455:ASN:ND2	2.36	0.58
4:E:234:PHE:HB3	4:E:239:MET:HE3	1.84	0.58
1:a:38:PRO:HD2	1:a:490:LEU:HD12	1.85	0.58

	A la D	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
6:H:30:GLN:NE2	6:H:102:ALA:O	2.36	0.58	
8:Z:264:ARG:NH1	8:Z:298:ASP:OD2	2.35	0.58	
3:d:86:PRO:O	3:d:90:MET:HG3	2.04	0.58	
4:e:48:MET:HG3	4:e:107:THR:HG23	1.84	0.58	
7:q:47:TYR:O	7:q:455:ASN:ND2	2.35	0.58	
9:P:163:GLU:OE2	9:P:188:TYR:OH	2.19	0.58	
5:g:203:LYS:HB2	5:g:384:LEU:HD13	1.84	0.58	
7:Q:84:LYS:O	7:Q:88:MET:HG3	2.03	0.58	
1:A:80:ASP:OD1	1:A:84:LYS:NZ	2.37	0.57	
2:b:83:VAL:HA	4:e:393:MET:HE1	1.84	0.57	
5:G:50:LEU:HB2	5:G:58:VAL:HB	1.87	0.57	
2:B:131:ARG:NH2	2:B:512:GLU:OE2	2.36	0.57	
2:B:151:ASP:HB3	2:B:154:LYS:HB2	1.85	0.57	
2:b:50:LYS:HD3	3:d:534:ASP:HB3	1.86	0.57	
8:z:61:ASN:HB2	8:z:92:THR:HG21	1.86	0.57	
8:z:63:LEU:O	8:z:67:MET:HG3	2.03	0.57	
9:P:259:PHE:HE2	9:P:264:LEU:HB2	1.67	0.57	
8:Z:24:ILE:HD13	8:Z:107:ASP:HB2	1.86	0.57	
2:b:467:ALA:O	2:b:471:GLU:HG2	2.05	0.57	
7:q:259:ILE:HG21	7:q:265:LEU:HB2	1.85	0.57	
6:H:1:MET:HE3	5:g:21:LYS:HB3	1.86	0.57	
7:Q:73:LEU:HD11	7:Q:105:LEU:HD11	1.85	0.57	
3:d:252:CYS:HB2	3:d:306:ARG:HE	1.70	0.57	
6:h:194:MET:O	6:h:369:THR:OG1	2.16	0.57	
5:G:49:MET:HE3	8:Z:518:VAL:HG11	1.87	0.57	
5:G:155:ILE:HG21	5:G:401:VAL:HG21	1.87	0.57	
2:b:131:ARG:NH2	4:e:179:ASN:OD1	2.38	0.57	
3:d:458:MET:HE3	3:d:458:MET:HA	1.87	0.57	
5:g:289:VAL:HG21	5:g:350:LEU:HD13	1.87	0.57	
10:N:192:ALA:O	10:N:193:MET:HE2	2.05	0.57	
5:G:16:ARG:HG3	5:G:523:VAL:HG22	1.86	0.57	
2:B:261:THR:HG21	3:D:279:GLU:HG3	1.86	0.56	
2:B:326:VAL:HG13	2:B:327:THR:HG23	1.87	0.56	
4:E:78:LEU:HB3	4:E:92:VAL:HG22	1.87	0.56	
8:Z:229:TYR:HE2	8:Z:287:LYS:HD3	1.69	0.56	
8:Z:455:SER:OG	8:Z:481:LEU:O	2.23	0.56	
1:a:204:SER:OG	1:a:207:GLU:OE1	2.20	0.56	
6:h:200:VAL:HG11	6:h:353:ILE:HG22	1.86	0.56	
11:A:601:ADP:O2B	13:A:603:AF3:F3	2.13	0.56	
2:b:465:LEU:HD11	2:b:478:LEU:HG	1.86	0.56	
3:d:480:LEU:HD11	3:d:493:ILE:HG13	1.86	0.56	

	t i cas page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:414:GLU:HG2	2:B:446:LEU:HD23	1.87	0.56
3:D:248:LEU:HD23	3:D:299:LEU:HB2	1.86	0.56
3:D:291:LYS:HD3	3:D:322:ILE:HD11	1.86	0.56
4:E:170:LYS:O	4:E:182:HIS:NE2	2.36	0.56
4:E:198:ASP:OD2	4:E:202:ARG:NH1	2.38	0.56
4:E:242:LYS:NZ	4:E:244:GLU:OE2	2.39	0.56
5:G:130:LEU:HB2	5:G:510:VAL:HG11	1.88	0.56
6:H:187:ASP:OD1	6:H:188:ASP:N	2.36	0.56
2:b:141:LEU:HD13	2:b:417:MET:HE3	1.86	0.56
11:q:601:ADP:O3B	13:q:603:AF3:F2	2.12	0.56
6:h:197:ILE:HG21	6:h:386:GLU:HG3	1.87	0.56
10:N:97:THR:HA	10:N:394:TRP:HA	1.87	0.56
2:B:131:ARG:NH2	4:E:179:ASN:OD1	2.38	0.56
4:e:170:LYS:O	4:e:182:HIS:NE2	2.35	0.56
5:g:79:SER:O	5:g:83:ILE:HG12	2.05	0.56
6:h:152:ARG:NH1	6:h:181:ASP:OD1	2.38	0.56
4:E:38:ILE:HG21	4:E:121:GLU:HB2	1.88	0.56
9:P:161:VAL:HG21	9:P:202:MET:HE3	1.88	0.56
4:E:248:ILE:HG12	4:E:299:LEU:HD23	1.86	0.56
6:h:160:MET:HE2	6:h:173:ALA:HA	1.88	0.56
4:e:60:MET:HG3	4:e:70:VAL:HG22	1.88	0.56
4:e:198:ASP:HB3	4:e:202:ARG:HB2	1.87	0.56
7:q:73:LEU:HD11	7:q:105:LEU:HD12	1.88	0.56
5:G:27:ILE:HD13	5:G:110:GLU:HB2	1.88	0.56
7:q:190:ILE:HG22	7:q:191:PHE:H	1.71	0.56
5:G:383:ILE:HD12	8:Z:514:ASN:HD22	1.71	0.55
7:Q:31:ARG:HH22	8:z:6:THR:HG21	1.71	0.55
7:q:417:ILE:HG13	7:q:467:LEU:HD13	1.87	0.55
1:a:205:GLN:OE1	5:g:127:ARG:NH2	2.40	0.55
6:h:26:ILE:O	6:h:30:GLN:HG2	2.05	0.55
2:B:249:ILE:HG21	4:E:277:LEU:HG	1.87	0.55
4:E:289:ILE:HG13	4:E:313:LEU:HB3	1.87	0.55
10:N:174:TYR:CZ	10:N:192:ALA:HB2	2.41	0.55
3:D:67:ASP:OD2	3:D:68:VAL:N	2.40	0.55
3:D:311:ASP:OD1	3:D:312:LEU:N	2.39	0.55
10:N:260:ASP:OD2	10:N:262:LYS:NZ	2.36	0.55
3:d:38:ILE:HG21	3:d:121:THR:OG1	2.05	0.55
3:d:85:HIS:HA	9:P:60:LYS:HE3	1.89	0.55
8:z:40:PRO:HD3	8:z:158:THR:HG22	1.89	0.55
10:N:338:ARG:NH1	10:N:353:ASP:OD1	2.39	0.55
5:G:339:ARG:NH2	5:G:341:ASP:OD2	2.39	0.55

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:D:45:ALA:O	3:D:49:ARG:HG3	2.06	0.55
3:D:55:LYS:HG3	3:D:469:ALA:HA	1.88	0.55
5:G:468:ALA:O	5:G:471:THR:OG1	2.25	0.55
6:H:186:LEU:HD11	6:H:195:ILE:HD11	1.88	0.55
5:g:90:GLU:HG3	5:g:91:VAL:HG13	1.89	0.55
2:B:97:ASP:OD1	13:B:603:AF3:F1	2.14	0.55
4:E:532:ASP:HB2	6:H:47:LYS:HD2	1.88	0.55
5:g:39:THR:HG23	5:g:48:LYS:HZ1	1.72	0.55
11:g:601:ADP:O1B	13:g:603:AF3:F3	2.14	0.55
7:q:175:ASN:HD21	7:q:212:ILE:HD11	1.71	0.55
1:A:27:SER:O	1:A:31:ILE:HG12	2.07	0.55
7:Q:93:GLN:NE2	7:Q:99:ASP:O	2.37	0.55
3:d:103:GLY:HA3	3:d:410:CYS:HB3	1.88	0.55
4:e:14:ARG:NH1	6:h:16:SER:OG	2.36	0.55
5:g:415:GLU:OE2	5:g:502:LYS:NZ	2.40	0.55
6:h:23:VAL:HG13	6:h:109:LYS:HE3	1.89	0.55
1:a:526:ARG:NH2	3:d:58:ASP:OD1	2.36	0.54
2:B:50:LYS:HD3	3:D:534:ASP:HB3	1.89	0.54
10:N:249:GLU:HG3	10:N:251:GLY:H	1.73	0.54
2:B:68:ALA:HB2	2:B:99:THR:HG21	1.89	0.54
1:a:533:LEU:HD12	3:d:63:ASP:HA	1.90	0.54
2:b:326:VAL:HG13	2:b:327:THR:HG23	1.89	0.54
3:d:248:LEU:HD21	3:d:333:ILE:HD12	1.90	0.54
8:Z:210:LEU:HD21	8:Z:323:ARG:HB3	1.90	0.54
4:E:256:GLU:OE2	10:N:269:ARG:NH1	2.41	0.54
5:G:62:ASP:OD2	13:G:603:AF3:F3	2.16	0.54
5:G:226:HIS:HD2	5:G:228:ARG:H	1.56	0.54
11:B:601:ADP:O3A	13:B:603:AF3:F1	2.14	0.54
11:D:601:ADP:O2B	13:D:603:AF3:F1	2.16	0.54
3:d:203:VAL:HB	3:d:413:ARG:HG3	1.90	0.54
7:q:97:VAL:HG13	7:q:401:VAL:HG21	1.88	0.54
1:A:184:ILE:O	1:A:185:ARG:HG2	2.08	0.54
6:H:427:ILE:HB	6:H:428:PRO:HD2	1.90	0.54
3:D:502:ASN:HD21	3:D:504:LEU:HB2	1.74	0.53
3:d:418:LYS:HD2	3:d:513:LEU:HB2	1.91	0.53
2:b:432:GLU:O	2:b:436:MET:HG3	2.08	0.53
9:P:186:HIS:NE2	9:P:188:TYR:HB3	2.24	0.53
9:P:240:LYS:HB3	9:P:245:ILE:HG13	1.89	0.53
1:A:11:ARG:O	4:e:2:ALA:N	2.41	0.53
2:b:79:PRO:HB2	4:e:60:MET:SD	2.48	0.53
2:b:122:HIS:CD2	2:b:124:GLN:HB2	2.44	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:e:289:ILE:HG13	4:e:313:LEU:HB3	1.89	0.53
9:P:150:GLN:NE2	9:P:208:GLU:OE2	2.39	0.53
6:H:32:ILE:HG13	6:H:76:ALA:HB1	1.89	0.53
8:Z:134:LEU:HB2	8:Z:418:MET:HE2	1.90	0.53
3:d:170:SER:HB2	3:d:411:VAL:HG21	1.90	0.53
4:e:426:GLU:N	4:e:426:GLU:OE1	2.41	0.53
5:g:504:GLN:NE2	5:g:508:THR:OG1	2.41	0.53
6:h:249:GLU:OE2	7:q:269:SER:OG	2.23	0.53
5:G:83:ILE:HD13	5:G:512:THR:HG21	1.90	0.53
3:d:134:SER:OG	3:d:527:ARG:NE	2.33	0.53
4:e:62:VAL:HG22	4:e:68:VAL:HG22	1.90	0.53
6:h:97:VAL:HG12	6:h:502:ALA:HA	1.90	0.53
4:E:200:GLU:HG2	4:E:202:ARG:HG3	1.90	0.53
1:a:214:TYR:OH	1:a:315:ASP:OD1	2.17	0.53
5:g:244:SER:HB3	5:g:246:GLU:HG2	1.90	0.53
1:A:245:LYS:HG3	5:G:251:GLU:HB3	1.91	0.53
3:D:119:SER:HB3	3:D:453:ALA:HB1	1.89	0.53
2:b:417:MET:HE2	2:b:504:LEU:HD22	1.91	0.53
11:g:601:ADP:O1B	13:g:603:AF3:F1	2.15	0.53
10:N:184:MET:HG3	10:N:185:ALA:N	2.22	0.53
2:B:83:VAL:HG22	4:E:393:MET:HE3	1.90	0.53
7:Q:402:LEU:HD21	7:Q:408:LEU:HD21	1.91	0.53
8:Z:47:LEU:HB2	8:Z:55:LYS:HB3	1.90	0.53
5:g:155:ILE:HG21	5:g:401:VAL:HG21	1.90	0.53
5:g:258:ILE:HG23	5:g:263:ASP:HB2	1.91	0.53
8:z:178:ALA:O	8:z:370:ARG:NH1	2.41	0.53
1:A:47:ASP:OD1	5:G:526:HIS:NE2	2.39	0.53
5:g:157:ASN:O	5:g:161:THR:HG23	2.08	0.53
8:Z:231:LEU:HD23	8:Z:291:VAL:HG22	1.90	0.52
3:d:152:SER:HA	3:d:422:ILE:HG22	1.91	0.52
7:q:333:LEU:HD11	7:q:339:PRO:HB3	1.91	0.52
3:D:38:ILE:HG21	3:D:121:THR:OG1	2.10	0.52
4:E:423:GLY:HA2	4:E:426:GLU:OE2	2.08	0.52
6:H:160:MET:HE2	6:H:173:ALA:HA	1.92	0.52
4:e:239:MET:SD	4:e:320:PRO:HA	2.48	0.52
4:E:104:ASP:OD1	4:E:105:GLY:N	2.43	0.52
7:Q:73:LEU:HD11	7:Q:105:LEU:HD21	1.91	0.52
4:e:255:PHE:HB2	4:e:306:PHE:HB3	1.90	0.52
8:z:10:LYS:HE2	8:z:526:MET:HG3	1.91	0.52
9:P:86:ARG:NH1	9:P:247:ASN:OD1	2.42	0.52
10:N:96:LYS:HB3	10:N:98:ARG:HH22	1.73	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:55:THR:HA	1:A:387:GLU:OE2	2.10	0.52
2:b:168:SER:OG	11:b:601:ADP:N7	2.38	0.52
3:D:305:LEU:HA	10:N:184:MET:HE1	1.91	0.52
4:E:255:PHE:HB2	4:E:306:PHE:CB	2.40	0.52
1:a:266:ARG:NH1	1:a:273:GLU:OE2	2.36	0.52
1:a:370:ARG:HE	9:P:299:GLU:HA	1.75	0.52
3:d:271:GLN:O	3:d:275:VAL:HG23	2.10	0.52
4:e:302:CYS:SG	4:e:303:GLN:N	2.83	0.52
6:h:60:ASN:ND2	6:h:165:SER:O	2.42	0.52
1:A:278:ILE:O	1:A:281:THR:HG22	2.10	0.52
8:Z:227:ASP:O	8:Z:288:GLY:N	2.40	0.52
5:g:83:ILE:HG23	5:g:508:THR:HG22	1.92	0.52
3:d:235:ASN:ND2	3:d:322:ILE:O	2.42	0.52
2:B:95:VAL:HG12	2:B:399:GLN:HG3	1.92	0.52
4:E:201:ARG:HA	4:E:201:ARG:NE	2.24	0.52
8:Z:196:MET:HE2	8:Z:375:LEU:HD11	1.92	0.52
3:d:138:GLN:OE1	3:d:527:ARG:NH1	2.41	0.52
5:g:319:ASP:OD1	5:g:322:ARG:NH1	2.43	0.52
5:g:497:GLU:OE1	5:g:502:LYS:HD3	2.10	0.52
8:z:3:ALA:O	8:z:6:THR:OG1	2.26	0.52
10:N:294:ASP:HB2	10:N:311:ARG:HD2	1.91	0.52
3:d:98:GLN:NE2	3:d:104:ASP:O	2.43	0.52
8:z:35:ARG:NH2	8:z:453:GLN:OE1	2.31	0.52
3:D:494:ASN:ND2	3:D:501:SER:OG	2.34	0.52
5:G:319:ASP:OD1	5:G:322:ARG:NH1	2.43	0.52
8:Z:414:VAL:HG22	8:Z:418:MET:HE3	1.92	0.52
1:a:179:ILE:HD13	1:a:195:VAL:HG23	1.92	0.51
4:e:293:LYS:HD2	4:e:319:LEU:HD11	1.91	0.51
6:h:32:ILE:HG13	6:h:76:ALA:HB1	1.92	0.51
4:E:48:MET:HG3	4:E:107:THR:HG23	1.91	0.51
1:a:508:ILE:HD11	1:a:512:LYS:HE3	1.92	0.51
3:d:48:ILE:HG13	3:d:48:ILE:O	2.11	0.51
7:q:400:LYS:O	7:q:403:THR:OG1	2.23	0.51
2:b:227:ASN:HD21	3:d:343:LYS:HD3	1.76	0.51
11:d:601:ADP:O2B	13:d:603:AF3:F3	2.18	0.51
5:g:521:ASP:OD1	5:g:522:ILE:N	2.44	0.51
11:z:601:ADP:O1B	13:z:603:AF3:F3	2.18	0.51
2:B:257:ARG:HH21	3:D:263:GLN:HG3	1.76	0.51
1:a:281:THR:HG21	1:a:340:PHE:CE1	2.46	0.51
3:d:476:THR:HG23	3:d:500:ILE:HD11	1.92	0.51
3:d:534:ASP:OD1	3:d:535:VAL:N	2.43	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:q:93:GLN:HG3	7:q:104:VAL:HG21	1.92	0.51
8:z:97:LEU:HD13	8:z:450:VAL:HG21	1.91	0.51
11:z:601:ADP:O1B	13:z:603:AF3:F1	2.19	0.51
4:E:73:ASP:OD1	13:E:603:AF3:F2	2.18	0.51
3:D:503:ILE:HG13	3:D:508:VAL:HB	1.93	0.51
5:G:165:ILE:HD12	5:G:387:VAL:HG13	1.92	0.51
6:H:446:PRO:HA	6:H:449:LEU:HD12	1.93	0.51
8:Z:7:LEU:HD23	6:h:2:MET:HE1	1.93	0.51
11:Z:601:ADP:O2B	13:Z:603:AF3:F1	2.19	0.51
5:g:41:LEU:HD22	5:g:450:THR:HG23	1.93	0.51
5:g:182:MET:SD	5:g:372:CYS:HB3	2.51	0.51
7:q:158:ASP:OD1	7:q:158:ASP:N	2.44	0.51
8:z:455:SER:OG	8:z:481:LEU:O	2.27	0.51
1:A:238:ASP:HB3	1:A:329:SER:HA	1.91	0.51
5:g:77:ALA:O	5:g:81:ILE:HG12	2.11	0.51
7:Q:129:ILE:HG12	7:Q:516:VAL:HG13	1.93	0.51
7:Q:175:ASN:HD21	7:Q:212:ILE:HD11	1.76	0.51
1:a:222:SER:H	1:a:225:MET:HE2	1.76	0.51
4:e:119:GLU:HB3	4:e:450:ALA:HB1	1.93	0.51
7:q:284:ALA:HB2	7:q:310:ILE:HD11	1.92	0.51
9:P:141:ARG:O	9:P:144:ARG:NH1	2.44	0.51
3:D:48:ILE:HD12	3:D:107:THR:HG23	1.93	0.51
5:G:7:VAL:H	4:e:7:LEU:HD23	1.76	0.51
6:h:279:GLU:HG3	6:h:283:HIS:CD2	2.45	0.51
8:z:229:TYR:HE2	8:z:287:LYS:HD3	1.76	0.51
3:D:69:THR:HG21	3:D:80:GLN:HG3	1.93	0.50
7:Q:70:ALA:HB2	7:Q:101:THR:HG21	1.93	0.50
1:a:411:GLY:O	1:a:498:ASN:ND2	2.39	0.50
6:h:152:ARG:HH11	6:h:184:MET:HE2	1.77	0.50
8:z:426:LYS:NZ	8:z:438:GLN:OE1	2.35	0.50
4:e:51:SER:OG	4:e:59:LYS:NZ	2.29	0.50
7:q:247:ASP:OD1	7:q:248:GLY:N	2.43	0.50
4:E:239:MET:SD	4:E:320:PRO:HA	2.51	0.50
4:E:306:PHE:CE1	4:E:323:ARG:HB3	2.47	0.50
2:b:259:ASP:OD1	2:b:263:LYS:NZ	2.44	0.50
4:e:236:HIS:HB2	4:e:239:MET:HE3	1.92	0.50
5:g:224:VAL:HB	5:g:229:MET:HE3	1.93	0.50
5:g:256:ILE:HD11	8:z:244:VAL:HB	1.94	0.50
7:q:84:LYS:O	7:q:88:MET:HG3	2.10	0.50
7:q:238:LYS:HB2	7:q:288:ALA:HA	1.93	0.50
5:G:91:VAL:O	5:G:400:ASN:ND2	2.42	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:e:290:GLN:NE2	4:e:294:GLU:OE1	2.42	0.50
8:z:227:ASP:O	8:z:288:GLY:N	2.41	0.50
8:Z:289:PHE:HB3	8:Z:310:ILE:HG12	1.93	0.50
2:b:517:VAL:HG11	4:e:60:MET:HE3	1.94	0.50
1:A:411:GLY:O	1:A:498:ASN:ND2	2.36	0.50
5:G:225:THR:HG22	5:G:313:ARG:HB2	1.93	0.50
11:Q:601:ADP:O2B	13:Q:603:AF3:F2	2.20	0.50
1:a:354:GLU:HG3	1:a:363:LEU:HD12	1.92	0.50
5:G:77:ALA:O	5:G:81:ILE:HG12	2.11	0.50
6:h:186:LEU:HB2	6:h:190:LEU:HD23	1.93	0.50
6:H:86:GLN:NE2	6:H:92:ASP:O	2.40	0.50
8:Z:227:ASP:OD1	8:Z:346:HIS:NE2	2.45	0.50
1:a:446:LEU:HD11	1:a:468:ARG:HD2	1.93	0.50
4:e:255:PHE:HB2	4:e:306:PHE:CB	2.42	0.50
6:h:187:ASP:OD1	6:h:188:ASP:N	2.38	0.50
1:A:450:ASN:ND2	1:A:460:SER:OG	2.40	0.50
8:Z:230:ILE:N	8:Z:345:GLY:O	2.42	0.50
1:a:402:VAL:HG23	1:a:506:PRO:HG3	1.93	0.50
2:b:403:ASP:OD2	2:b:498:GLN:NE2	2.39	0.50
3:d:160:ARG:NH2	3:d:189:ASN:OD1	2.40	0.50
8:z:29:GLY:O	8:z:33:VAL:HG23	2.12	0.50
5:G:121:VAL:HG13	5:G:433:GLU:HG2	1.94	0.49
2:b:516:ARG:NH2	4:e:58:ASP:OD1	2.44	0.49
8:z:47:LEU:HD13	8:z:66:GLU:HB2	1.92	0.49
2:B:204:LYS:NZ	2:B:357:ASP:OD2	2.37	0.49
3:D:73:ASP:OD1	13:D:603:AF3:F3	2.20	0.49
2:B:45:PRO:HG3	11:B:601:ADP:C5	2.47	0.49
3:D:454:PHE:O	3:D:458:MET:HG2	2.12	0.49
5:G:243:SER:OG	5:G:333:SER:O	2.24	0.49
8:Z:198:HIS:CD2	8:Z:199:LYS:HG2	2.48	0.49
1:a:132:ILE:HD11	1:a:419:LEU:HD11	1.93	0.49
4:e:184:GLN:NE2	4:e:222:THR:O	2.46	0.49
2:B:71:LEU:HB3	2:B:85:VAL:HG22	1.94	0.49
7:Q:220:GLY:O	7:Q:374:THR:OG1	2.24	0.49
1:a:278:ILE:O	1:a:281:THR:HG22	2.12	0.49
7:q:11:PHE:CE1	8:z:69:ILE:HD11	2.48	0.49
9:P:158:PHE:O	9:P:159:LYS:HG2	2.13	0.49
2:B:251:ILE:O	2:B:254:SER:OG	2.23	0.49
6:H:136:ILE:HD11	6:H:416:LEU:HD11	1.93	0.49
6:H:168:ILE:HG21	6:H:385:THR:HG23	1.94	0.49
7:Q:33:ILE:HG21	7:Q:116:GLU:HB2	1.93	0.49

	i i i i i i i i i i i i i i i i i i i	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:a:527:ILE:HD13	3:d:60:MET:HE3	1.95	0.49
5:g:194:ASP:OD2	5:g:197:LYS:HB2	2.11	0.49
6:h:221:SER:HB2	6:h:225:PHE:CG	2.47	0.49
8:z:135:GLU:OE1	8:z:498:TYR:OH	2.25	0.49
9:P:80:GLN:O	9:P:84:MET:HG2	2.13	0.49
6:h:447:ARG:HB2	6:h:461:LEU:HD11	1.93	0.49
10:N:98:ARG:NH1	10:N:395:ALA:O	2.45	0.49
4:E:10:ASP:CG	4:E:13:GLY:H	2.17	0.49
7:Q:277:ASP:HB2	7:Q:304:TYR:CZ	2.47	0.49
8:Z:164:LEU:HD21	8:Z:387:ILE:HG12	1.93	0.49
6:h:152:ARG:NH2	6:h:156:GLU:OE2	2.45	0.49
9:P:183:ILE:HB	9:P:239:TYR:HB2	1.95	0.49
3:D:26:ASP:OD1	3:D:26:ASP:N	2.45	0.49
6:H:107:GLN:HG3	6:H:441:ALA:HB2	1.94	0.49
11:a:601:ADP:O2B	13:a:603:AF3:F3	2.20	0.49
3:d:38:ILE:HG12	3:d:117:LEU:HB3	1.94	0.49
5:g:40:CYS:SG	5:g:48:LYS:NZ	2.67	0.49
7:q:139:ALA:HB2	7:q:423:ILE:HD11	1.94	0.49
2:B:113:ALA:HB2	2:B:130:TRP:CH2	2.48	0.49
5:G:438:ARG:O	5:G:442:GLN:HG2	2.13	0.49
9:P:268:LEU:HD22	9:P:273:LEU:HD22	1.94	0.49
3:d:124:LEU:HD21	3:d:130:PRO:HB3	1.95	0.49
4:e:101:GLU:OE1	6:h:375:ARG:NH2	2.45	0.49
6:h:186:LEU:HD11	6:h:195:ILE:HD11	1.95	0.49
8:z:148:LEU:HD11	8:z:402:ILE:HD11	1.95	0.49
5:G:504:GLN:NE2	5:G:508:THR:OG1	2.44	0.48
4:e:464:GLU:HB3	4:e:470:PRO:HG3	1.94	0.48
10:N:189:LYS:HA	10:N:189:LYS:HD3	1.67	0.48
6:H:200:VAL:HG11	6:H:353:ILE:HG22	1.95	0.48
7:Q:168:ILE:HD13	7:Q:183:ILE:HD12	1.95	0.48
7:Q:200:ASP:OD2	7:Q:203:ARG:NH2	2.46	0.48
1:a:39:VAL:HG21	1:a:456:ALA:HB2	1.95	0.48
1:a:203:ARG:HD2	1:a:207:GLU:HG2	1.94	0.48
1:a:440:GLU:OE1	1:a:443:ARG:NH1	2.46	0.48
4:e:230:VAL:HB	4:e:372:LEU:HB3	1.95	0.48
6:h:255:ILE:HG12	7:q:259:ILE:HB	1.95	0.48
7:Q:190:ILE:HG22	7:Q:191:PHE:N	2.28	0.48
7:Q:247:ASP:OD1	7:Q:248:GLY:N	2.46	0.48
2:b:170:LYS:NZ	13:b:603:AF3:F1	2.35	0.48
8:Z:251:LYS:NZ	8:Z:255:GLU:OE2	2.33	0.48
5:g:62:ASP:OD2	13:g:603:AF3:F2	2.22	0.48

	l l l l l l l l l l l l l l l l l l l	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:E:10:ASP:CG	4:E:12:TYR:H	2.22	0.48
4:E:157:VAL:HG12	4:E:157:VAL:O	2.13	0.48
5:G:33:ILE:HG21	5:G:80:MET:HB3	1.96	0.48
5:G:84:SER:HB2	5:G:99:ILE:HD11	1.95	0.48
5:g:266:ARG:O	5:g:270:MET:HG3	2.14	0.48
10:N:279:THR:O	10:N:306:ARG:NH1	2.47	0.48
5:G:203:LYS:HD2	5:G:384:LEU:HB3	1.95	0.48
6:H:364:CYS:HB2	6:H:367:ALA:HB2	1.96	0.48
4:e:367:THR:HG23	4:e:369:ASP:H	1.77	0.48
7:q:65:VAL:HG12	7:q:383:ASN:HB3	1.94	0.48
2:B:256:VAL:HG23	3:D:260:MET:HE2	1.95	0.48
3:D:72:ASN:ND2	3:D:173:SER:O	2.47	0.48
6:H:194:MET:HE2	6:H:194:MET:HA	1.96	0.48
6:H:455:PHE:CE2	6:H:482:GLU:HG2	2.49	0.48
7:Q:11:PHE:HE1	8:Z:69:ILE:HD11	1.79	0.48
8:Z:166:ASP:O	8:Z:169:THR:OG1	2.32	0.48
8:z:289:PHE:HB3	8:z:310:ILE:HG12	1.96	0.48
2:b:163:ALA:HB3	2:b:180:THR:HG23	1.95	0.48
6:h:95:THR:HG22	6:h:99:LEU:HD13	1.95	0.48
8:Z:135:GLU:OE1	8:Z:498:TYR:OH	2.28	0.48
3:d:257:LYS:HB3	3:d:306:ARG:HH11	1.79	0.48
5:g:256:ILE:HB	8:z:246:SER:HA	1.96	0.48
1:A:230:VAL:HG23	1:A:231:ASN:H	1.79	0.48
7:Q:400:LYS:O	7:Q:403:THR:OG1	2.25	0.48
8:Z:35:ARG:NH2	8:Z:453:GLN:OE1	2.32	0.48
8:Z:449:LYS:HB3	8:Z:459:LEU:HD23	1.94	0.48
7:q:148:CYS:HB2	7:q:493:LEU:HD13	1.95	0.48
8:z:210:LEU:HD22	8:z:324:LEU:HG	1.95	0.48
7:q:40:ALA:HA	7:q:105:LEU:CD2	2.43	0.47
6:H:155:LEU:HD11	6:H:400:ILE:HD11	1.96	0.47
7:Q:11:PHE:CE1	8:Z:69:ILE:HD11	2.49	0.47
7:q:206:LYS:NZ	7:q:389:GLU:OE1	2.40	0.47
4:E:101:GLU:OE1	6:H:375:ARG:NH2	2.43	0.47
5:G:332:VAL:HG21	5:G:338:LEU:HD13	1.96	0.47
10:N:353:ASP:HB3	10:N:357:GLY:H	1.79	0.47
2:b:138:ARG:NH2	4:e:220:GLU:OE2	2.38	0.47
4:e:233:ASP:OD1	4:e:233:ASP:N	2.44	0.47
5:g:222:LYS:O	5:g:361:THR:OG1	2.32	0.47
6:h:168:ILE:HG21	6:h:385:THR:HG23	1.96	0.47
8:Z:63:LEU:O	8:Z:67:MET:HG3	2.13	0.47
3:d:42:LYS:HD3	3:d:118:ASP:HB2	1.96	0.47

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:e:452:ALA:O	4:e:456:GLU:HG2	2.15	0.47
7:q:33:ILE:HG21	7:q:116:GLU:HB2	1.97	0.47
6:H:34:GLU:HA	6:H:37:ARG:HG3	1.96	0.47
4:e:518:SER:O	4:e:522:GLN:HG2	2.14	0.47
7:q:168:ILE:HD13	7:q:183:ILE:HD12	1.97	0.47
9:P:82:ARG:NH1	9:P:85:GLU:OE1	2.47	0.47
1:A:59:ALA:HB2	1:A:90:THR:HG21	1.95	0.47
6:H:396:VAL:O	6:H:400:ILE:HG12	2.15	0.47
6:H:483:ASP:CG	6:H:484:ILE:H	2.22	0.47
7:Q:417:ILE:HG13	7:Q:467:LEU:HD13	1.95	0.47
8:Z:134:LEU:HA	8:Z:137:VAL:HG12	1.96	0.47
1:a:278:ILE:HD11	1:a:331:LEU:HD11	1.97	0.47
1:a:318:ARG:NE	9:P:294:GLU:OE2	2.46	0.47
2:b:79:PRO:O	2:b:83:VAL:HG23	2.13	0.47
3:d:381:SER:O	3:d:381:SER:OG	2.26	0.47
8:z:487:MET:HE2	8:z:492:VAL:HG21	1.97	0.47
1:a:349:GLU:HB3	1:a:366:ASN:HB3	1.95	0.47
8:z:175:SER:HB2	8:z:206:LEU:HD13	1.95	0.47
1:A:289:THR:HG23	1:A:316:LEU:HD22	1.97	0.47
2:b:47:GLY:O	3:d:531:LYS:NZ	2.48	0.47
9:P:238:ILE:HD13	9:P:246:GLY:HA3	1.97	0.47
3:D:151:MET:HE3	3:D:151:MET:HB2	1.76	0.47
1:a:505:GLU:OE2	1:a:510:LYS:NZ	2.34	0.47
2:b:232:ILE:HD13	2:b:288:ASN:HB3	1.97	0.47
5:g:96:THR:N	11:g:601:ADP:O2B	2.45	0.47
8:z:30:LEU:HD11	8:z:74:ALA:HA	1.97	0.47
9:P:185:VAL:HB	9:P:237:LEU:HB2	1.96	0.47
10:N:307:LEU:HD23	10:N:316:VAL:HG11	1.97	0.47
5:G:218:VAL:HG21	5:G:323:ILE:HG12	1.98	0.46
4:e:115:ALA:O	4:e:119:GLU:HG2	2.15	0.46
5:G:157:ASN:O	5:G:161:THR:HG23	2.15	0.46
8:Z:445:LEU:HD13	8:Z:463:LEU:HD21	1.97	0.46
2:b:54:SER:HA	3:d:538:THR:OG1	2.15	0.46
7:q:14:MET:HB3	8:z:69:ILE:HD12	1.97	0.46
2:b:45:PRO:HG3	11:b:601:ADP:C5	2.50	0.46
2:b:293:ARG:HA	2:b:315:ALA:O	2.16	0.46
10:N:221:LEU:HG	10:N:230:LEU:HD12	1.98	0.46
1:A:127:GLU:HG3	1:A:426:TYR:CE2	2.51	0.46
4:E:444:GLU:OE1	4:E:444:GLU:N	2.42	0.46
5:G:409:PRO:O	5:G:414:SER:OG	2.28	0.46
6:H:163:LEU:HD22	6:H:168:ILE:HD11	1.98	0.46

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
2:B:408:TYR:O	2:B:413:SER:OG	2.28	0.46
1:a:182:THR:O	9:P:301:ASP:N	2.48	0.46
2:b:11:ILE:HD11	4:e:40:ALA:HA	1.98	0.46
3:d:208:ILE:HG23	3:d:386:VAL:HG23	1.97	0.46
6:h:126:ARG:NH1	7:q:174:GLY:HA3	2.31	0.46
9:P:80:GLN:O	9:P:83:GLU:HG3	2.16	0.46
1:A:39:VAL:HG21	1:A:456:ALA:HB2	1.98	0.46
4:E:198:ASP:HB3	4:E:202:ARG:HB2	1.97	0.46
2:b:510:ALA:HA	2:b:513:VAL:HG12	1.98	0.46
3:d:119:SER:HB2	3:d:453:ALA:HB1	1.97	0.46
3:d:191:VAL:HG21	3:d:412:ILE:HB	1.97	0.46
5:g:217:GLY:HA3	5:g:363:ILE:O	2.15	0.46
6:h:67:LYS:HG2	6:h:84:LYS:HE3	1.97	0.46
8:z:159:LYS:HA	8:z:159:LYS:HD3	1.75	0.46
9:P:60:LYS:HA	9:P:60:LYS:HD2	1.76	0.46
10:N:332:ASP:OD1	10:N:333:PHE:N	2.49	0.46
4:E:295:THR:HG21	4:E:348:LEU:HG	1.96	0.46
5:G:266:ARG:HE	5:G:270:MET:HG3	1.81	0.46
6:H:92:ASP:HB3	6:H:395:ILE:HD11	1.98	0.46
1:a:299:TYR:OH	5:g:337:GLU:OE2	2.32	0.46
6:h:408:GLY:O	6:h:487:ASN:ND2	2.43	0.46
3:D:430:ILE:HG13	3:D:480:LEU:HD13	1.98	0.46
3:D:511:PRO:HG2	3:D:514:VAL:HG23	1.98	0.46
5:G:108:VAL:HG11	5:G:443:ALA:HB2	1.97	0.46
6:H:73:HIS:HB3	6:H:76:ALA:HB3	1.98	0.46
6:H:104:PHE:O	6:H:108:VAL:HG22	2.15	0.46
1:a:22:VAL:HG21	1:a:105:ASP:CB	2.46	0.46
4:e:426:GLU:CD	4:e:513:LYS:HE3	2.40	0.46
9:P:56:ASN:O	9:P:59:PRO:HD2	2.15	0.46
1:A:225:MET:HE1	1:A:307:ALA:HB3	1.97	0.45
7:Q:164:LEU:O	7:Q:168:ILE:HG12	2.16	0.45
7:Q:259:ILE:HG21	7:Q:265:LEU:HB2	1.98	0.45
1:a:321:LYS:HG2	9:P:297:ASP:O	2.16	0.45
2:b:249:ILE:HG21	4:e:277:LEU:HG	1.99	0.45
2:b:263:LYS:O	2:b:267:ILE:HG12	2.16	0.45
11:b:601:ADP:O3B	13:b:603:AF3:F3	2.24	0.45
3:d:407:ASP:OD1	14:d:701:HOH:O	2.20	0.45
1:A:31:ILE:O	1:A:43:LYS:HE3	2.16	0.45
:A:Z 4: Y K:UH	1:A:315:ASP·OD1	2.31	0.45
5:G:83:ILE:HG13	1:A:315:ASP:OD1 5:G:84:SER·N	2.31 2.31	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:d:129:HIS:CD2	3:d:130:PRO:HD2	2.51	0.45
4:e:157:VAL:HG12	4:e:157:VAL:O	2.16	0.45
3:D:115:SER:OG	3:D:460:VAL:HG11	2.16	0.45
5:G:130:LEU:O	5:G:134:ILE:HG12	2.16	0.45
6:H:40:LEU:HD13	6:H:99:LEU:HD12	1.98	0.45
6:H:242:VAL:HG12	6:H:244:LEU:HG	1.97	0.45
6:H:457:ALA:O	6:H:461:LEU:HD23	2.16	0.45
6:h:5:PRO:HG2	7:q:31:ARG:HE	1.81	0.45
6:h:394:MET:O	6:h:398:ARG:HG2	2.16	0.45
6:h:413:GLU:OE2	6:h:499:ARG:NE	2.42	0.45
8:z:166:ASP:O	8:z:169:THR:OG1	2.33	0.45
6:H:167:LEU:HD12	6:H:168:ILE:HG23	1.97	0.45
7:Q:136:CYS:HB2	7:Q:512:THR:HG21	1.99	0.45
1:a:37:GLY:H	11:a:601:ADP:H5'1	1.82	0.45
1:a:397:CYS:O	1:a:401:ARG:HG2	2.16	0.45
1:a:452:LEU:HB3	1:a:490:LEU:HD11	1.98	0.45
1:A:57:ASP:OD1	13:A:603:AF3:F2	2.24	0.45
6:H:97:VAL:HG12	6:H:502:ALA:HA	1.99	0.45
1:a:281:THR:HG21	1:a:340:PHE:HE1	1.81	0.45
3:d:210:ILE:HD13	3:d:388:ILE:HB	1.99	0.45
7:q:408:LEU:HD23	7:q:500:THR:HA	1.97	0.45
5:G:79:SER:O	5:G:83:ILE:HG23	2.16	0.45
7:Q:166:THR:HG23	7:Q:497:ILE:HG23	1.98	0.45
6:h:18:GLY:O	6:h:21:GLN:HG3	2.17	0.45
6:h:202:GLY:O	6:h:375:ARG:NH2	2.49	0.45
8:z:28:ARG:HD3	8:z:104:LYS:HB2	1.98	0.45
8:z:168:LEU:HD11	8:z:387:ILE:HG23	1.97	0.45
1:A:120:GLY:HA3	1:A:437:ALA:HB3	1.98	0.45
8:Z:492:VAL:HG23	8:Z:494:VAL:HG23	1.98	0.45
1:a:245:LYS:HG3	5:g:251:GLU:HB3	1.97	0.45
2:b:408:TYR:O	2:b:413:SER:OG	2.28	0.45
6:h:516:VAL:HG21	7:q:55:MET:HE3	1.97	0.45
3:D:345:VAL:HG11	3:D:351:PHE:HB2	1.99	0.45
4:E:109:VAL:HG13	4:E:516:GLN:HG2	1.98	0.45
7:Q:410:PRO:O	7:Q:415:THR:OG1	2.29	0.45
1:a:11:ARG:HG3	1:a:531:ILE:HG13	1.99	0.45
2:b:22:GLU:HG2	2:b:23:THR:N	2.32	0.45
6:h:499:ARG:NH2	11:h:601:ADP:O3'	2.47	0.45
8:z:44:MET:HE2	8:z:44:MET:HB2	1.82	0.45
9:P:286:ARG:HD2	9:P:286:ARG:HA	1.81	0.45
4:E:307:ASP:HA	10:N:269:ARG:HD2	1.99	0.45

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
7:Q:38:GLU:O	7:Q:42:THR:HG23	2.17	0.45
7:Q:190:ILE:HD11	7:Q:373:SER:H	1.81	0.45
8:Z:179:ILE:HD13	8:Z:191:ILE:HG13	1.98	0.45
1:a:57:ASP:OD1	13:a:603:AF3:F2	2.25	0.45
1:a:107:LEU:HG	1:a:440:GLU:HG3	1.98	0.45
1:a:484:LYS:HE3	1:a:484:LYS:HB2	1.76	0.45
3:d:73:ASP:OD1	13:d:603:AF3:F2	2.25	0.45
3:D:153:ARG:NH1	3:D:154:PRO:O	2.50	0.45
8:Z:277:LEU:HD22	8:Z:339:LEU:HD12	1.97	0.45
2:b:160:MET:HE3	2:b:160:MET:HB3	1.89	0.45
4:e:402:LEU:O	4:e:406:LEU:HG	2.16	0.45
9:P:86:ARG:HH22	9:P:249:VAL:HG22	1.82	0.45
1:A:228:ARG:NE	1:A:350:GLU:OE2	2.49	0.44
4:e:225:ILE:HD13	4:e:229:ILE:HD11	1.99	0.44
7:q:224:LYS:HD2	7:q:358:THR:HG21	1.99	0.44
1:A:252:VAL:HB	5:G:254:THR:HA	1.99	0.44
1:A:397:CYS:O	1:A:401:ARG:HG2	2.18	0.44
3:D:170:SER:HB2	3:D:411:VAL:HG21	1.98	0.44
3:D:191:VAL:HG21	3:D:412:ILE:HB	1.99	0.44
6:H:429:GLY:HA2	6:H:432:GLN:HB3	1.99	0.44
7:q:239:ILE:HG13	7:q:290:VAL:HB	1.99	0.44
6:H:10:LYS:HA	6:H:10:LYS:HD3	1.83	0.44
8:Z:462:THR:O	8:Z:466:ILE:HG12	2.18	0.44
8:Z:520:GLU:HG2	8:Z:522:MET:HG3	2.00	0.44
3:d:72:ASN:ND2	3:d:173:SER:O	2.50	0.44
7:q:123:LEU:HD21	7:q:433:LEU:HD12	1.98	0.44
10:N:287:VAL:HG23	10:N:298:SER:HB3	1.99	0.44
7:Q:176:GLU:OE1	7:Q:176:GLU:N	2.50	0.44
2:b:271:GLU:HG2	4:e:274:TYR:CZ	2.52	0.44
4:e:196:VAL:O	4:e:196:VAL:HG23	2.18	0.44
5:g:80:MET:HE3	5:g:99:ILE:HG23	1.98	0.44
6:h:38:THR:HG1	6:h:47:LYS:HZ3	1.53	0.44
5:G:436:PRO:O	5:G:440:VAL:HG23	2.17	0.44
8:Z:429:VAL:HG21	8:Z:437:VAL:HG21	1.99	0.44
4:e:78:LEU:HD23	4:e:78:LEU:HA	1.83	0.44
10:N:101:LEU:HB2	10:N:391:LEU:HB2	1.99	0.44
6:H:193:LYS:HG3	6:H:194:MET:HE3	1.99	0.44
6:H:269:ALA:HB2	7:Q:262:ALA:HB1	2.00	0.44
2:B:250:LYS:HA	2:B:252:PHE:CE1	2.53	0.44
5:G:520:ASP:OD1	5:G:521:ASP:N	2.50	0.44
2:b:193:SER:OG	2:b:195:ASN:OD1	2.27	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:b:414:GLU:HG2	2:b:446:LEU:HD23	2.00	0.44
6:h:443:GLU:OE1	6:h:465:ARG:NH2	2.50	0.44
2:B:203:LYS:HB3	2:B:383:LEU:HD13	1.98	0.44
2:B:260:SER:HB2	3:D:278:GLU:OE1	2.17	0.44
2:B:272:LYS:HG3	3:D:347:HIS:CD2	2.53	0.44
2:B:326:VAL:HB	2:B:370:ALA:HB3	1.99	0.44
5:G:258:ILE:HG23	5:G:263:ASP:HB2	1.99	0.44
5:G:410:GLY:O	5:G:490:MET:HE3	2.18	0.44
8:Z:470:HIS:ND1	8:Z:475:GLN:O	2.39	0.44
2:b:113:ALA:HB2	2:b:130:TRP:CH2	2.53	0.44
2:b:151:ASP:HB3	2:b:154:LYS:HB2	2.00	0.44
2:b:356:GLU:O	3:d:206:ARG:NH2	2.48	0.44
6:h:413:GLU:OE1	6:h:445:ILE:HB	2.18	0.44
7:q:225:LYS:HE3	7:q:225:LYS:HB3	1.73	0.44
7:q:253:THR:OG1	7:q:254:LYS:N	2.51	0.44
7:q:497:ILE:HD13	11:q:601:ADP:C6	2.52	0.44
8:z:101:GLU:HG3	8:z:443:ALA:HA	2.00	0.44
9:P:137:LEU:HA	9:P:141:ARG:CZ	2.48	0.44
1:A:179:ILE:HD13	1:A:195:VAL:HG23	1.99	0.44
1:A:331:LEU:O	1:A:338:GLU:HG3	2.18	0.44
4:e:175:SER:OG	11:e:601:ADP:O1A	2.26	0.44
7:Q:175:ASN:ND2	7:Q:212:ILE:HD11	2.33	0.43
8:Z:26:ALA:HB2	8:Z:71:HIS:CE1	2.53	0.43
1:a:120:GLY:HA3	1:a:437:ALA:HB3	1.99	0.43
4:e:156:LEU:HG	4:e:158:ASP:H	1.82	0.43
9:P:213:LYS:O	9:P:213:LYS:HD3	2.18	0.43
1:A:227:LYS:HD3	1:A:353:GLN:HG2	1.99	0.43
4:E:196:VAL:O	4:E:196:VAL:HG23	2.19	0.43
8:Z:190:MET:SD	8:Z:326:LEU:HD12	2.58	0.43
8:Z:236:SER:O	8:Z:270:ARG:NH2	2.51	0.43
2:b:59:ALA:O	3:d:89:ARG:NH2	2.39	0.43
2:b:220:LEU:HD22	2:b:323:LEU:HD11	1.99	0.43
4:e:387:ILE:HD11	4:e:402:LEU:HD12	1.99	0.43
4:e:485:MET:SD	4:e:485:MET:N	2.91	0.43
6:h:136:ILE:HD11	6:h:416:LEU:HD11	2.00	0.43
7:q:25:LEU:O	7:q:29:VAL:HG22	2.18	0.43
1:A:272:LYS:HD3	5:G:334:ARG:HH12	1.83	0.43
2:B:159:LEU:HD22	2:B:397:LEU:HD22	1.99	0.43
5:G:384:LEU:HD23	5:G:384:LEU:HA	1.83	0.43
6:H:197:ILE:HG21	6:H:386:GLU:HG3	2.00	0.43
1:a:128:ALA:HB2	1:a:423:LEU:HD11	2.01	0.43

	t i c	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:b:122:HIS:ND1	2:b:123:PRO:HD2	2.33	0.43	
6:h:191:GLN:HB3	6:h:193:LYS:HG2	2.01	0.43	
2:B:29:PHE:O	2:B:33:ILE:HG12	2.18	0.43	
2:B:79:PRO:HB2	4:E:60:MET:SD	2.58	0.43	
4:E:142:ARG:O	4:E:146:GLU:HG2	2.18	0.43	
4:E:236:HIS:H	4:E:239:MET:HE2	1.84	0.43	
5:G:256:ILE:HB	8:Z:246:SER:HA	2.00	0.43	
6:H:10:LYS:HE2	7:Q:79:GLN:HB2	2.00	0.43	
4:e:231:ASP:HA	4:e:371:MET:HE2	1.99	0.43	
9:P:238:ILE:HB	9:P:246:GLY:H	1.84	0.43	
1:A:156:MET:HE1	1:A:169:ALA:N	2.33	0.43	
4:E:255:PHE:HB2	4:E:306:PHE:HB3	1.99	0.43	
5:G:504:GLN:NE2	5:G:508:THR:HG1	2.17	0.43	
6:H:183:VAL:HG11	6:H:396:VAL:HG12	2.00	0.43	
7:Q:523:GLN:HB2	8:Z:45:LYS:HD3	2.00	0.43	
1:a:163:ILE:HB	5:g:127:ARG:HD2	2.00	0.43	
3:d:91:LEU:HD23	3:d:110:VAL:HG13	2.01	0.43	
10:N:390:THR:OG1	10:N:392:ARG:NH2	2.50	0.43	
6:H:20:PRO:HA	6:H:23:VAL:HG22	2.00	0.43	
6:H:337:LEU:HD23	6:H:337:LEU:HA	1.89	0.43	
1:a:298:LYS:NZ	5:g:242:ASP:OD2	2.44	0.43	
5:g:463:LEU:HD23	5:g:463:LEU:HA	1.91	0.43	
7:q:412:GLY:N	11:q:601:ADP:O2'	2.36	0.43	
8:z:213:ASP:OD1	8:z:213:ASP:N	2.42	0.43	
8:z:248:PHE:CD1	8:z:259:LEU:HD13	2.54	0.43	
2:B:113:ALA:HB2	2:B:130:TRP:HH2	1.83	0.43	
2:B:519:ASN:HB3	4:E:59:LYS:HD3	2.01	0.43	
3:D:534:ASP:OD1	3:D:535:VAL:N	2.52	0.43	
6:H:130:GLN:HA	6:H:130:GLN:OE1	2.18	0.43	
1:a:44:MET:SD	5:g:75:PRO:HB2	2.59	0.43	
1:a:127:GLU:HG3	1:a:426:TYR:CZ	2.52	0.43	
1:a:292:ILE:HG23	1:a:296:CYS:HB2	2.00	0.43	
4:e:404:ASP:OD1	14:e:701:HOH:O	2.21	0.43	
7:q:277:ASP:HB2	7:q:304:TYR:CZ	2.53	0.43	
7:Q:169:MET:HE3	11:Q:601:ADP:HN61	1.84	0.43	
8:Z:198:HIS:HE1	8:Z:377:LYS:HE2	1.84	0.43	
1:a:55:THR:HA	1:a:387:GLU:OE1	2.19	0.43	
2:b:415:MET:HE3	2:b:415:MET:HB3	1.79	0.43	
3:d:173:SER:OG	11:d:601:ADP:O1A	2.28	0.43	
6:h:297:ASP:OD1	6:h:297:ASP:N	2.52	0.43	
5:G:429:MET:HE1	5:G:437:TYR:CG	2.53	0.43	

	i i i i i i i i i i i i i i i i i i i	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
6:H:180:VAL:O	6:H:184:MET:HG3	2.18	0.43	
7:Q:139:ALA:HB2	7:Q:423:ILE:HD11	2.01	0.43	
7:Q:182:LEU:HD23	7:Q:182:LEU:HA	1.91	0.43	
7:Q:191:PHE:HB2	7:Q:197:PHE:HD1	1.84	0.43	
5:g:435:TRP:HB2	5:g:436:PRO:HD3	2.00	0.43	
1:A:281:THR:HG21	1:A:340:PHE:CE1	2.54	0.43	
1:A:526:ARG:HA	3:D:57:MET:CE	2.49	0.43	
3:D:224:VAL:HG12	3:D:226:GLY:H	1.84	0.43	
5:G:329:ALA:HB2	5:G:344:GLY:HA3	2.01	0.43	
5:G:418:VAL:O	5:G:422:LEU:HD23	2.19	0.43	
7:q:272:GLU:OE2	8:z:256:ARG:NH1	2.36	0.43	
9:P:86:ARG:O	9:P:89:LYS:HG3	2.19	0.43	
1:A:44:MET:HB2	5:G:522:ILE:HG12	2.01	0.42	
4:E:14:ARG:NH1	6:H:16:SER:OG	2.38	0.42	
4:E:364:PHE:HB2	4:E:367:THR:HG21	2.01	0.42	
6:H:189:LEU:HD22	6:H:191:GLN:HE21	1.84	0.42	
7:Q:117:GLU:O	7:Q:121:ILE:HG23	2.19	0.42	
8:Z:40:PRO:HD3	8:Z:158:THR:HG22	2.01	0.42	
8:Z:40:PRO:HA	8:Z:158:THR:HA	2.00	0.42	
4:e:129:HIS:HB3	4:e:132:ARG:HG2	2.00	0.42	
6:h:320:LYS:O	6:h:324:MET:HG2	2.19	0.42	
8:z:15:ARG:NH1	8:z:15:ARG:HB2	2.34	0.42	
8:z:211:VAL:HG23	8:z:373:THR:HG21	2.02	0.42	
5:G:226:HIS:CD2	5:G:228:ARG:H	2.34	0.42	
8:Z:404:ASP:C	8:Z:406:CYS:H	2.27	0.42	
2:b:323:LEU:HA	2:b:326:VAL:HG12	2.00	0.42	
2:b:445:MET:HE2	2:b:445:MET:HB2	1.86	0.42	
3:d:227:LEU:HB3	3:d:339:THR:HG21	2.00	0.42	
5:g:152:MET:HE3	5:g:152:MET:HB3	1.88	0.42	
5:g:352:ILE:HG13	5:g:361:THR:HG23	2.01	0.42	
2:B:54:SER:HA	3:D:538:THR:HB	2.01	0.42	
2:B:66:ASP:OD2	13:B:603:AF3:F2	2.27	0.42	
3:D:407:ASP:OD2	13:D:603:AF3:F3	2.26	0.42	
4:E:25:LYS:NZ	6:H:70:ASP:OD2	2.42	0.42	
4:E:248:ILE:HD12	4:E:337:THR:HG21	2.02	0.42	
5:G:238:ILE:HG23	5:G:289:VAL:HG23	2.01	0.42	
6:H:442:LEU:HD23	6:H:442:LEU:HA	1.87	0.42	
7:Q:249:MET:HE1	8:Z:261:LYS:HE3	2.01	0.42	
8:Z:4:VAL:HG21	8:Z:522:MET:SD	2.59	0.42	
8:Z:31:GLN:O	8:Z:35:ARG:HG3	2.19	0.42	
3:d:511:PRO:HG2	3:d:514:VAL:HG23	2.02	0.42	

	i i i i i i i i i i i i i i i i i i i	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:299:TYR:OH	5:G:334:ARG:NH1	2.50	0.42
2:B:20:ARG:HD2	2:B:20:ARG:HA	1.92	0.42
2:B:259:ASP:OD1	2:B:259:ASP:N	2.49	0.42
2:B:263:LYS:O	2:B:267:ILE:HG12	2.20	0.42
2:B:395:CYS:HB3	4:E:366:THR:HG21	2.02	0.42
3:D:249:ILE:HD13	3:D:249:ILE:HA	1.88	0.42
3:D:337:CYS:SG	3:D:344:PRO:HD3	2.59	0.42
1:a:118:ILE:HG23	1:a:522:ILE:HG12	2.00	0.42
2:b:42:THR:HB	2:b:65:ASN:OD1	2.19	0.42
3:d:435:ARG:HA	3:d:435:ARG:HD3	1.76	0.42
4:e:280:TYR:O	4:e:284:LYS:HG2	2.20	0.42
4:e:405:ALA:O	4:e:409:ILE:HG12	2.20	0.42
7:q:136:CYS:HB2	7:q:512:THR:HG21	2.01	0.42
8:z:388:LYS:HB3	8:z:388:LYS:HE3	1.77	0.42
1:A:171:MET:HE3	1:A:375:ILE:HD13	2.00	0.42
1:A:239:PHE:O	1:A:288:THR:OG1	2.37	0.42
4:E:172:THR:OG1	4:E:408:VAL:HG21	2.20	0.42
5:G:20:ARG:HG2	5:G:20:ARG:HH11	1.84	0.42
5:G:90:GLU:HG3	5:G:91:VAL:HG13	2.02	0.42
5:G:396:GLN:O	5:G:400:ASN:ND2	2.53	0.42
6:H:499:ARG:HA	6:H:499:ARG:HD3	1.77	0.42
8:Z:7:LEU:HD23	8:Z:7:LEU:HA	1.87	0.42
8:Z:64:LEU:HD11	8:Z:96:VAL:HG21	2.01	0.42
4:e:81:MET:HG2	4:e:83:VAL:HG13	2.01	0.42
8:z:337:ASP:OD1	8:z:338:ASP:N	2.50	0.42
3:D:229:LEU:HD12	3:D:374:LEU:HD23	2.00	0.42
4:E:59:LYS:HG3	4:E:77:ILE:HD13	2.00	0.42
7:Q:118:LEU:HD22	7:Q:123:LEU:HD12	2.01	0.42
2:b:220:LEU:HD12	2:b:220:LEU:HA	1.89	0.42
8:z:221:MET:HE1	8:z:302:LEU:HD22	2.01	0.42
9:P:48:LEU:HD23	9:P:48:LEU:HA	1.90	0.42
3:D:483:ARG:HH22	3:D:501:SER:HA	1.85	0.42
6:H:413:GLU:OE2	6:H:445:ILE:HB	2.19	0.42
8:Z:120:THR:HB	8:Z:513:THR:HG23	2.01	0.42
1:a:450:ASN:HD22	1:a:460:SER:HG	1.67	0.42
4:e:27:ARG:HH21	4:e:532:ASP:CG	2.28	0.42
4:e:306:PHE:CE1	4:e:323:ARG:HB3	2.55	0.42
5:g:376:LEU:HB3	5:g:384:LEU:HD22	2.01	0.42
7:q:190:ILE:HD11	7:q:373:SER:N	2.35	0.42
9:P:145:MET:HE2	9:P:145:MET:HB3	1.91	0.42
1:A:347:GLN:HB2	1:A:368:LYS:HD2	2.02	0.42

	the second se	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:E:285:PHE:HD1	4:E:288:MET:HE2	1.85	0.42
7:Q:101:THR:N	13:Q:603:AF3:F1	2.35	0.42
7:Q:330:ALA:HB2	7:Q:345:GLY:HA3	2.01	0.42
1:a:107:LEU:HD23	1:a:107:LEU:HA	1.85	0.42
2:b:187:VAL:HG21	2:b:397:LEU:HB2	2.02	0.42
7:q:348:ASP:HB3	7:q:366:GLU:HG2	2.02	0.42
10:N:306:ARG:HE	10:N:306:ARG:HB3	1.75	0.42
3:D:60:MET:HG3	3:D:70:ILE:HG12	2.02	0.42
4:E:533:ILE:HD13	6:H:48:LEU:HB3	2.02	0.42
5:G:155:ILE:HG12	5:G:407:LEU:HD11	2.01	0.42
6:H:394:MET:HE3	6:H:394:MET:HB3	1.90	0.42
7:Q:26:GLU:HA	7:Q:30:TYR:CD2	2.54	0.42
8:Z:504:LEU:HD23	8:Z:504:LEU:HA	1.89	0.42
2:b:495:GLU:OE1	2:b:500:LYS:HD3	2.20	0.42
6:h:73:HIS:HB3	6:h:76:ALA:HB3	2.02	0.42
8:z:480:ASP:HB2	8:z:487:MET:HG2	2.01	0.42
10:N:236:HIS:CD2	10:N:236:HIS:H	2.38	0.42
2:B:181:LYS:HE3	2:B:181:LYS:HB3	1.85	0.42
6:H:26:ILE:HG23	6:H:105:LEU:HB3	2.02	0.42
7:Q:459:LYS:HB3	7:Q:462:GLU:OE1	2.20	0.42
8:Z:188:LEU:HD23	8:Z:188:LEU:HA	1.88	0.42
1:a:37:GLY:N	11:a:601:ADP:H5'1	2.35	0.42
1:a:113:HIS:NE2	3:d:468:ASN:O	2.53	0.42
1:a:122:ARG:HG3	3:d:178:GLN:HG3	2.01	0.42
4:e:364:PHE:HB2	4:e:367:THR:HG21	2.01	0.42
6:h:85:SER:OG	7:q:209:GLY:HA2	2.20	0.42
7:q:96:GLU:OE2	8:z:199:LYS:NZ	2.53	0.42
8:z:103:LEU:HD23	8:z:103:LEU:HA	1.89	0.42
7:Q:47:TYR:HD1	7:Q:102:ASN:HB3	1.85	0.41
1:a:499:LYS:HA	1:a:504:PHE:HE1	1.84	0.41
4:e:4:MET:HA	4:e:25:LYS:O	2.19	0.41
4:e:157:VAL:HA	4:e:165:LEU:HD11	2.02	0.41
10:N:288:ARG:HD2	10:N:332:ASP:HA	2.01	0.41
4:E:377:CYS:HB2	4:E:380:SER:HB3	2.01	0.41
7:Q:65:VAL:HG12	7:Q:383:ASN:HB3	2.01	0.41
8:Z:307:LYS:HB2	8:Z:307:LYS:HE2	1.79	0.41
1:a:142:GLU:HG2	1:a:143:LEU:HD22	2.01	0.41
1:a:479:GLU:OE1	1:a:480:ARG:HD2	2.20	0.41
4:e:141:ALA:O	4:e:145:ILE:HG12	2.19	0.41
6:h:30:GLN:HE22	6:h:106:LYS:HD2	1.85	0.41
8:z:218:HIS:CD2	8:z:220:ASP:HB2	2.54	0.41

	the second se	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:185:ARG:HG2	1:A:187:GLN:HG2	2.03	0.41
2:B:64:THR:HA	2:B:385:GLU:OE1	2.21	0.41
2:B:293:ARG:HA	2:B:315:ALA:O	2.20	0.41
4:E:16:PHE:CZ	4:E:18:ILE:HD11	2.55	0.41
5:G:415:GLU:HG2	5:G:447:ILE:HB	2.02	0.41
7:Q:151:ALA:O	7:Q:152:LYS:HG2	2.19	0.41
7:Q:238:LYS:HB2	7:Q:288:ALA:HA	2.02	0.41
1:A:261:ASP:OD1	1:A:262:GLN:N	2.53	0.41
2:B:35:ILE:HD13	2:B:35:ILE:HA	1.95	0.41
4:E:332:LEU:HD23	4:E:332:LEU:HA	1.91	0.41
5:G:462:LEU:HD23	5:G:462:LEU:HA	1.86	0.41
6:H:38:THR:HG1	6:H:47:LYS:HZ3	1.60	0.41
1:a:190:TYR:CE2	1:a:403:LEU:HD13	2.56	0.41
5:g:319:ASP:O	5:g:323:ILE:HG13	2.21	0.41
7:q:151:ALA:C	7:q:153:ASN:H	2.28	0.41
3:D:408:ALA:O	3:D:412:ILE:HG12	2.20	0.41
3:D:432:LEU:HD23	3:D:458:MET:HE2	2.01	0.41
6:H:273:ILE:HD11	7:Q:266:MET:HA	2.02	0.41
8:Z:29:GLY:O	8:Z:33:VAL:HG23	2.19	0.41
8:Z:97:LEU:HD13	8:Z:450:VAL:HG21	2.02	0.41
8:Z:172:VAL:HG13	8:Z:395:LEU:HD23	2.02	0.41
2:b:521:ILE:HB	4:e:61:MET:SD	2.60	0.41
8:z:217:ARG:HA	8:z:217:ARG:HD2	1.75	0.41
10:N:184:MET:CG	10:N:185:ALA:H	2.28	0.41
2:B:473:ASN:ND2	2:B:476:ALA:HB2	2.36	0.41
5:G:237:ARG:H	5:G:288:ASP:HB2	1.85	0.41
5:G:276:GLN:HB2	5:G:303:TYR:CZ	2.55	0.41
7:Q:218:LEU:HD11	7:Q:364:LYS:HG3	2.02	0.41
1:a:82:GLN:NE2	1:a:88:ASP:O	2.53	0.41
2:b:480:MET:HE3	2:b:480:MET:HB3	1.86	0.41
6:h:218:LYS:HE3	6:h:221:SER:HB3	2.02	0.41
1:A:254:ILE:HD11	1:A:263:ILE:HD12	2.02	0.41
5:G:184:GLN:HG3	5:G:193:ILE:HG12	2.01	0.41
6:H:147:ASP:HB3	6:H:150:GLU:HB2	2.02	0.41
8:Z:399:LYS:NZ	8:Z:403:ASP:OD2	2.52	0.41
1:a:238:ASP:HB3	1:a:329:SER:HA	2.02	0.41
2:b:333:SER:H	4:e:312:HIS:CG	2.38	0.41
2:b:422:THR:O	2:b:426:ASN:ND2	2.53	0.41
3:d:432:LEU:HD23	3:d:432:LEU:HA	1.92	0.41
8:z:165:ALA:O	8:z:169:THR:HG23	2.21	0.41
1:A:431:GLY:O	1:A:435:GLN:NE2	2.37	0.41

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
4:E:385:ILE:HG21	4:E:402:LEU:HD13	2.03	0.41	
1:a:128:ALA:HB1	1:a:419:LEU:HD13	2.03	0.41	
5:g:447:ILE:HB	5:g:448:PRO:HD3	2.01	0.41	
6:h:104:PHE:O	6:h:108:VAL:HG22	2.20	0.41	
8:z:20:LEU:HD21	8:z:110:ILE:HD13	2.03	0.41	
1:A:227:LYS:HB3	1:A:353:GLN:HB3	2.02	0.41	
4:E:280:TYR:O	4:E:284:LYS:HG2	2.21	0.41	
5:G:452:ILE:HG21	5:G:459:THR:HA	2.02	0.41	
7:Q:408:LEU:HD23	7:Q:500:THR:HA	2.03	0.41	
8:Z:198:HIS:CE1	8:Z:377:LYS:HE2	2.56	0.41	
1:a:156:MET:HE1	1:a:169:ALA:N	2.36	0.41	
4:e:203:ASP:OD2	6:h:357:ARG:NH2	2.39	0.41	
6:h:42:PRO:HG2	6:h:479:ILE:HG13	2.03	0.41	
6:h:364:CYS:HB2	6:h:367:ALA:HB2	2.03	0.41	
6:h:398:ARG:HB3	6:h:497:MET:SD	2.60	0.41	
6:h:421:ARG:O	6:h:425:ARG:HG2	2.21	0.41	
7:q:227:THR:HG21	7:q:231:VAL:O	2.21	0.41	
7:q:459:LYS:HD2	7:q:459:LYS:HA	1.89	0.41	
9:P:161:VAL:HG13	9:P:216:LYS:HE2	2.03	0.41	
2:B:160:MET:SD	2:B:184:VAL:HG21	2.61	0.41	
2:B:285:HIS:HE1	2:B:335:PHE:HB3	1.85	0.41	
3:D:249:ILE:HD12	3:D:251:PHE:CE1	2.56	0.41	
4:E:454:ALA:O	4:E:457:VAL:HG12	2.21	0.41	
4:E:535:LYS:HB2	4:E:535:LYS:HE2	1.89	0.41	
5:G:245:LEU:HD23	5:G:245:LEU:HA	1.91	0.41	
5:G:266:ARG:NH2	5:G:273:GLU:OE1	2.54	0.41	
5:G:411:GLY:N	11:G:601:ADP:O2'	2.38	0.41	
1:a:529:ASP:OD2	1:a:530:LEU:N	2.55	0.41	
2:b:237:ILE:N	2:b:344:GLY:O	2.49	0.41	
3:d:123:LEU:HD23	3:d:123:LEU:HA	1.94	0.41	
1:A:266:ARG:HD2	1:A:266:ARG:HA	1.79	0.40	
2:B:271:GLU:HG2	4:E:274:TYR:OH	2.21	0.40	
7:Q:75:GLU:OE1	7:Q:75:GLU:HA	2.21	0.40	
8:Z:211:VAL:HG23	8:Z:373:THR:HG21	2.03	0.40	
1:a:261:ASP:OD1	1:a:261:ASP:N	2.53	0.40	
2:b:11:ILE:O	2:b:12:PHE:CG	2.73	0.40	
4:e:534:ARG:HD3	6:h:69:LEU:HD21	2.03	0.40	
6:h:499:ARG:HD3	6:h:499:ARG:HA	1.74	0.40	
7:q:33:ILE:HD13	7:q:116:GLU:HB2	2.03	0.40	
7:q:153:ASN:ND2	7:q:156:ASP:HB2	2.36	0.40	
7:q:253:THR:HG22	8:z:239:TYR:OH	2.22	0.40	

	l al page	Interatoria	Clash
Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
5:G:381:LYS:HE3	5:G:381:LYS:HB3	1.86	0.40
7:Q:33:ILE:HD13	7:Q:116:GLU:HB2	2.03	0.40
11:h:601:ADP:O3B	13:h:603:AF3:F3	2.25	0.40
2:b:519:ASN:HB3	4:e:59:LYS:HD3	2.03	0.40
4:e:412:LEU:HD23	4:e:412:LEU:HA	1.79	0.40
5:g:105:MET:O	5:g:126:TYR:OH	2.38	0.40
8:z:26:ALA:HB2	8:z:71:HIS:CE1	2.56	0.40
9:P:231:ASN:OD1	9:P:231:ASN:N	2.53	0.40
10:N:244:ASP:HB2	10:N:287:VAL:HG13	2.03	0.40
1:A:529:ASP:OD1	1:A:530:LEU:N	2.54	0.40
2:B:295:LEU:HD23	2:B:314:HIS:HB2	2.03	0.40
3:D:415:LEU:HA	3:D:415:LEU:HD23	1.82	0.40
8:Z:424:LYS:HE2	8:Z:424:LYS:HB2	1.92	0.40
5:g:74:HIS:HD2	5:g:76:ALA:H	1.69	0.40
8:z:120:THR:O	8:z:124:GLU:HG2	2.21	0.40
8:z:324:LEU:HD21	8:z:363:ILE:HD13	2.02	0.40
5:G:364:THR:OG1	5:G:365:ASP:N	2.54	0.40
6:H:202:GLY:O	6:H:375:ARG:NH2	2.55	0.40
6:H:427:ILE:HD11	6:H:432:GLN:HA	2.04	0.40
1:a:171:MET:HE3	1:a:171:MET:HB2	1.92	0.40
4:e:18:ILE:HA	6:h:73:HIS:HB2	2.02	0.40
8:z:134:LEU:HA	8:z:137:VAL:HG12	2.02	0.40
10:N:252:ASN:HB3	10:N:269:ARG:NH1	2.37	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	534/536~(100%)	515 (96%)	19 (4%)	0	100	100
1	a	530/536~(99%)	509 (96%)	21 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	В	524/526~(100%)	510 (97%)	14 (3%)	0	100	100
2	b	523/526~(99%)	507 (97%)	16 (3%)	0	100	100
3	D	518/520~(100%)	510 (98%)	8 (2%)	0	100	100
3	d	518/520~(100%)	498 (96%)	20 (4%)	0	100	100
4	Ε	534/540~(99%)	512 (96%)	22~(4%)	0	100	100
4	е	539/540~(100%)	527 (98%)	12 (2%)	0	100	100
5	G	524/528~(99%)	508 (97%)	16 (3%)	0	100	100
5	g	521/528~(99%)	508 (98%)	13 (2%)	0	100	100
6	Н	526/528~(100%)	510 (97%)	16 (3%)	0	100	100
6	h	523/528~(99%)	506 (97%)	17 (3%)	0	100	100
7	Q	536/538~(100%)	522 (97%)	14 (3%)	0	100	100
7	q	531/538~(99%)	517 (97%)	14 (3%)	0	100	100
8	Z	523/527~(99%)	509~(97%)	14 (3%)	0	100	100
8	Z	525/527~(100%)	511 (97%)	14 (3%)	0	100	100
9	Р	166/301~(55%)	150 (90%)	16 (10%)	0	100	100
10	N	206/395~(52%)	182 (88%)	24 (12%)	0	100	100
All	All	8801/9182 (96%)	8511 (97%)	290 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	447/447~(100%)	447 (100%)	0	100	100
1	a	444/447~(99%)	444 (100%)	0	100	100
2	В	418/418 (100%)	418 (100%)	0	100	100
2	b	417/418 (100%)	417 (100%)	0	100	100
3	D	442/442 (100%)	442 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	d	441/442~(100%)	441 (100%)	0	100 100
4	Е	452/455~(99%)	452 (100%)	0	100 100
4	е	456/455~(100%)	456 (100%)	0	100 100
5	G	456/457~(100%)	456 (100%)	0	100 100
5	g	453/457~(99%)	453 (100%)	0	100 100
6	Н	435/435~(100%)	434 (100%)	1 (0%)	92 97
6	h	432/435~(99%)	432 (100%)	0	100 100
7	Q	442/442~(100%)	442 (100%)	0	100 100
7	q	438/442~(99%)	438 (100%)	0	100 100
8	Z	437/439~(100%)	437 (100%)	0	100 100
8	Z	438/439~(100%)	438 (100%)	0	100 100
9	Р	166/266~(62%)	166 (100%)	0	100 100
10	N	180/334~(54%)	180 (100%)	0	100 100
All	All	7394/7670~(96%)	7393 (100%)	1 (0%)	100 100

All (1) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
6	Н	21	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (64) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	103	ASN
1	А	223	GLN
1	А	284	ASN
1	А	353	GLN
1	А	425	ASN
2	В	269	HIS
2	В	285	HIS
2	В	380	GLN
2	В	473	ASN
3	D	263	GLN
3	D	350	GLN
4	Е	291	GLN
5	G	157	ASN

Mol	Chain	Res	Type
5	G	302	HIS
5	G	390	ASN
5	G	420	HIS
6	Н	21	GLN
6	Н	25	ASN
6	Н	107	GLN
6	Н	119	GLN
6	Н	233	HIS
6	Н	331	GLN
6	Н	359	ASN
6	Н	431	GLN
7	Q	50	ASN
7	Q	79	GLN
7	Q	198	ASN
7	Q	359	GLN
7	Q	365	HIS
8	Ζ	198	HIS
8	Ζ	334	ASN
8	Ζ	438	GLN
8	Ζ	475	GLN
1	a	69	HIS
1	a	425	ASN
1	a	450	ASN
2	b	285	HIS
2	b	380	GLN
2	b	391	HIS
2	b	426	ASN
2	b	464	GLN
2	b	473	ASN
3	d	178	GLN
4	е	298	ASN
4	е	316	GLN
4	е	504	GLN
5	g	71	GLN
5	g	390	ASN
5	g	420	HIS
6	h	30	GLN
6	h	73	HIS
6	h	117	HIS
6	h	234	ASN
6	h	264	GLN
6	h	282	HIS

Mol	Chain	Res	Type
6	h	331	GLN
6	h	359	ASN
6	h	501	ASN
7	q	53	ASN
7	q	93	GLN
7	q	219	HIS
7	q	461	ASN
8	Z	68	GLN
10	N	285	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 48 ligands modelled in this entry, 16 are monoatomic - leaving 32 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Chain	Chain	Chain	Chain	Dec	Tink	Bo	ond leng	\mathbf{ths}	B	ond ang	les
INIOI	Moi Type Cham I	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2			
13	AF3	e	603	-	0,3,3	-	-	-				
11	ADP	d	601	12	24,29,29	0.88	0	29,45,45	1.30	3 (10%)		
11	ADP	Z	601	12	24,29,29	0.85	0	29,45,45	1.23	2 (6%)		
13	AF3	g	603	-	0,3,3	-	-	-				

Mal	Tune	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	les
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
11	ADP	В	601	12	24,29,29	0.88	0	29,45,45	1.24	3 (10%)
11	ADP	g	601	12	24,29,29	0.85	0	29,45,45	1.26	2 (6%)
13	AF3	Е	603	-	0,3,3	-	-	-		·
11	ADP	a	601	12	24,29,29	0.85	0	29,45,45	1.24	2 (6%)
13	AF3	А	603	-	0,3,3	-	-	-		
13	AF3	D	603	-	0,3,3	-	-	-		
11	ADP	h	601	12	24,29,29	0.86	0	29,45,45	1.33	3 (10%)
11	ADP	Н	601	12	24,29,29	0.90	0	29,45,45	1.22	2 (6%)
11	ADP	G	601	12	24,29,29	0.84	0	29,45,45	1.24	2 (6%)
11	ADP	q	601	12	24,29,29	0.86	0	29,45,45	1.28	2 (6%)
13	AF3	В	603	-	0,3,3	-	-	-		
11	ADP	D	601	12	24,29,29	0.90	0	29,45,45	1.22	2 (6%)
11	ADP	е	601	12	24,29,29	0.89	0	29,45,45	1.27	3 (10%)
11	ADP	b	601	12	24,29,29	0.88	0	29,45,45	1.26	3 (10%)
11	ADP	Z	601	12	24,29,29	0.84	0	29,45,45	1.23	2 (6%)
13	AF3	d	603	-	0,3,3	-	-	-		· · · · · · · · · · · · · · · · · · ·
13	AF3	b	603	-	0,3,3	-	-	-		
13	AF3	q	603	-	0,3,3	-	-	-		
13	AF3	Н	603	-	0,3,3	-	-	-		
13	AF3	G	603	-	0,3,3	-	-	-		
13	AF3	a	603	-	0,3,3	-	-	-		
11	ADP	А	601	12	24,29,29	0.83	0	$29,\!45,\!45$	1.21	2 (6%)
11	ADP	Ε	601	12	24,29,29	0.89	0	$29,\!45,\!45$	1.20	2 (6%)
11	ADP	Q	601	12	24,29,29	0.84	0	29,45,45	1.29	2 (6%)
13	AF3	Q	603	-	0,3,3	-	-	-		
13	AF3	h	603	-	0,3,3	-	-	-		
13	AF3	Z	603	-	0,3,3	-	-	-		
13	AF3	Ζ	603	-	0,3,3	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	ADP	g	601	12	-	2/12/32/32	0/3/3/3
11	ADP	a	601	12	-	5/12/32/32	0/3/3/3
11	ADP	d	601	12	-	1/12/32/32	0/3/3/3
11	ADP	h	601	12	-	3/12/32/32	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	ADP	Z	601	12	-	4/12/32/32	0/3/3/3
11	ADP	е	601	12	-	1/12/32/32	0/3/3/3
11	ADP	b	601	12	-	1/12/32/32	0/3/3/3
11	ADP	А	601	12	-	4/12/32/32	0/3/3/3
11	ADP	Е	601	12	-	0/12/32/32	0/3/3/3
11	ADP	Н	601	12	-	6/12/32/32	0/3/3/3
11	ADP	Q	601	12	-	7/12/32/32	0/3/3/3
11	ADP	Z	601	12	-	3/12/32/32	0/3/3/3
11	ADP	G	601	12	-	2/12/32/32	0/3/3/3
11	ADP	q	601	12	-	6/12/32/32	0/3/3/3
11	ADP	D	601	12	-	0/12/32/32	0/3/3/3
11	ADP	В	601	12	-	3/12/32/32	0/3/3/3

There are no bond length outliers.

All	(37)	bond	angle	outliers	are	listed	below:
-----	------	------	-------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	Q	601	ADP	N3-C2-N1	-3.79	123.52	128.67
11	a	601	ADP	N3-C2-N1	-3.78	123.55	128.67
11	А	601	ADP	N3-C2-N1	-3.77	123.56	128.67
11	В	601	ADP	N3-C2-N1	-3.75	123.58	128.67
11	q	601	ADP	N3-C2-N1	-3.75	123.58	128.67
11	h	601	ADP	N3-C2-N1	-3.72	123.62	128.67
11	Е	601	ADP	N3-C2-N1	-3.70	123.65	128.67
11	е	601	ADP	N3-C2-N1	-3.69	123.66	128.67
11	d	601	ADP	N3-C2-N1	-3.65	123.72	128.67
11	Н	601	ADP	N3-C2-N1	-3.63	123.74	128.67
11	Z	601	ADP	N3-C2-N1	-3.62	123.75	128.67
11	b	601	ADP	N3-C2-N1	-3.62	123.77	128.67
11	D	601	ADP	N3-C2-N1	-3.61	123.77	128.67
11	Ζ	601	ADP	N3-C2-N1	-3.61	123.78	128.67
11	g	601	ADP	N3-C2-N1	-3.57	123.83	128.67
11	G	601	ADP	N3-C2-N1	-3.48	123.95	128.67
11	Q	601	ADP	C4-C5-N7	-2.78	106.40	109.34
11	d	601	ADP	C4-C5-N7	-2.75	106.43	109.34
11	q	601	ADP	C4-C5-N7	-2.74	106.45	109.34
11	D	601	ADP	C4-C5-N7	-2.72	106.46	109.34
11	е	601	ADP	C4-C5-N7	-2.71	106.48	109.34
11	h	601	ADP	C4-C5-N7	-2.70	106.48	109.34
11	b	601	ADP	C4-C5-N7	-2.70	106.49	109.34

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	g	601	ADP	C4-C5-N7	-2.69	106.50	109.34
11	a	601	ADP	C4-C5-N7	-2.67	106.52	109.34
11	В	601	ADP	C4-C5-N7	-2.64	106.55	109.34
11	Е	601	ADP	C4-C5-N7	-2.63	106.56	109.34
11	Н	601	ADP	C4-C5-N7	-2.62	106.57	109.34
11	А	601	ADP	C4-C5-N7	-2.61	106.58	109.34
11	h	601	ADP	O4'-C1'-N9	2.61	112.20	108.75
11	G	601	ADP	C4-C5-N7	-2.56	106.63	109.34
11	Z	601	ADP	C4-C5-N7	-2.54	106.65	109.34
11	Ζ	601	ADP	C4-C5-N7	-2.51	106.69	109.34
11	В	601	ADP	O4'-C1'-N9	2.34	111.85	108.75
11	b	601	ADP	O4'-C1'-N9	2.18	111.64	108.75
11	d	601	ADP	O4'-C1'-N9	2.09	111.52	108.75
11	е	601	ADP	O4'-C1'-N9	2.04	111.44	108.75

There are no chirality outliers.

All	(48)) torsion	outliers	are	listed	below:
-----	------	-----------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	
11	А	601	ADP	C5'-O5'-PA-O1A	
11	А	601	ADP	C5'-O5'-PA-O2A	
11	А	601	ADP	C5'-O5'-PA-O3A	
11	В	601	ADP	C5'-O5'-PA-O1A	
11	Н	601	ADP	C5'-O5'-PA-O2A	
11	Q	601	ADP	C5'-O5'-PA-O1A	
11	Q	601	ADP	C5'-O5'-PA-O2A	
11	Q	601	ADP	C5'-O5'-PA-O3A	
11	Ζ	601	ADP	C5'-O5'-PA-O1A	
11	a	601	ADP	C5'-O5'-PA-O1A	
11	a	601	ADP	C5'-O5'-PA-O2A	
11	a	601	ADP	C5'-O5'-PA-O3A	
11	g	601	ADP	C5'-O5'-PA-O1A	
11	h	601	ADP	PB-O3A-PA-O5'	
11	h	601	ADP	C5'-O5'-PA-O2A	
11	q	601	ADP	C5'-O5'-PA-O1A	
11	q	601	ADP	C5'-O5'-PA-O3A	
11	q	601	ADP	C3'-C4'-C5'-O5'	
11	Q	601	ADP	C3'-C4'-C5'-O5'	
11	Ζ	601	ADP	O4'-C4'-C5'-O5'	
11	Ζ	601	ADP	C3'-C4'-C5'-O5'	
11	b	601	ADP	PB-O3A-PA-O5'	
11	d	601	ADP	PB-O3A-PA-O5'	

Mol	Chain	Res	Type	Atoms
11	е	601	ADP	PB-O3A-PA-O5'
11	q	601	ADP	O4'-C4'-C5'-O5'
11	Q	601	ADP	O4'-C4'-C5'-O5'
11	В	601	ADP	C5'-O5'-PA-O3A
11	Н	601	ADP	C5'-O5'-PA-O1A
11	Н	601	ADP	C5'-O5'-PA-O3A
11	h	601	ADP	C5'-O5'-PA-O3A
11	q	601	ADP	C5'-O5'-PA-O2A
11	Z	601	ADP	C5'-O5'-PA-O1A
11	Z	601	ADP	O4'-C4'-C5'-O5'
11	Q	601	ADP	PB-O3A-PA-O2A
11	Н	601	ADP	PA-O3A-PB-O1B
11	G	601	ADP	PB-O3A-PA-O2A
11	В	601	ADP	PB-O3A-PA-O5'
11	Н	601	ADP	PA-O3A-PB-O2B
11	Н	601	ADP	PA-O3A-PB-O3B
11	Q	601	ADP	PB-O3A-PA-O1A
11	Ζ	601	ADP	PB-O3A-PA-O2A
11	a	601	ADP	PB-O3A-PA-O1A
11	a	601	ADP	PB-O3A-PA-O2A
11	Z	601	ADP	C3'-C4'-C5'-O5'
11	А	601	ADP	PB-O3A-PA-O2A
11	G	601	ADP	PB-O3A-PA-O1A
11	g	601	ADP	PB-O3A-PA-O2A
11	q	601	ADP	PB-O3A-PA-O2A

Continued from previous page...

There are no ring outliers.

28 monomers are involved in 41 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
11	d	601	ADP	2	0
11	Ζ	601	ADP	1	0
13	g	603	AF3	3	0
11	В	601	ADP	3	0
11	g	601	ADP	3	0
13	Е	603	AF3	1	0
11	а	601	ADP	3	0
13	А	603	AF3	2	0
13	D	603	AF3	3	0
11	h	601	ADP	2	0
11	G	601	ADP	2	0
11	q	601	ADP	3	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
13	В	603	AF3	3	0
11	D	601	ADP	1	0
11	е	601	ADP	1	0
11	b	601	ADP	3	0
11	Z	601	ADP	2	0
13	d	603	AF3	2	0
13	b	603	AF3	2	0
13	q	603	AF3	1	0
13	G	603	AF3	2	0
13	a	603	AF3	2	0
11	А	601	ADP	1	0
11	Q	601	ADP	2	0
13	Q	603	AF3	2	0
13	h	603	AF3	1	0
13	Z	603	AF3	2	0
13	Ζ	603	AF3	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-40494. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 150

Z Index: 150

6.2.2 Raw map

X Index: 150

Y Index: 150

Z Index: 150

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 182

Z Index: 143

6.3.2 Raw map

X Index: 0

Y Index: 173

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.129. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 572 $\rm nm^3;$ this corresponds to an approximate mass of 516 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.333 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.333 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)			
resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.00	-	-	
Author-provided FSC curve	3.04	3.49	3.10	
Unmasked-calculated*	3.76	6.50	3.86	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.76 differs from the reported value 3.0 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-40494 and PDB model 8SHT. Per-residue inclusion information can be found in section 3 on page 10.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.129 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.129).

9.4 Atom inclusion (i)

At the recommended contour level, 93% of all backbone atoms, 93% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.129) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9280	0.5420
А	0.9420	0.5480
В	0.9500	0.5560
D	0.9500	0.5500
${ m E}$	0.9410	0.5500
G	0.9430	0.5520
Н	0.9470	0.5520
Ν	0.7870	0.4130
Р	0.4160	0.3330
Q	0.9350	0.5460
Z	0.9460	0.5480
a	0.9450	0.5470
b	0.9540	0.5560
d	0.9470	0.5490
е	0.9380	0.5490
g	0.9490	0.5530
h	0.9470	0.5550
q	0.9450	0.5480
Z	0.9420	0.5490

