

Jan 1, 2025 – 01:06 AM EST

PDB ID	:	8RJD
EMDB ID	:	EMD-19198
Title	:	Structure of the rabbit 80S ribosome stalled on a 2-TMD rhodopsin interme-
		diate in complex with Sec61-TRAP, open conformation 2
Authors	:	Lewis, A.J.O.; Hegde, R.S.
Deposited on	:	2023-12-20
Resolution	:	2.79 Å(reported)
This i	s a	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.79 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures
	(#Entries)	(#Entries)
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	1	476	95%	• •
2	2	96	9% 32% • 67%	
3	3	68	91%	6% •
4	4	66	9% 44% • 53%	
5	5	286	55% 60% • 38%	
6	6	183	88%	• 11%
7	7	185	89% 94%	· ·
8	8	173	84%	13%

Mol	Chain	Length	Quality of chair	n	
9	9	593	6% 6% 94%		
10	А	257	96%		
11	В	229	10% 25% • 74	2/6	_
12	C	425	\$/0/	. 15%	_
12		207	04 /0	• 1376	
10	Б Г	201	97%		
14		291	76%	23%	
15	F	247	<u>91%</u>	99	6
16	G	319	72%	• 27%	
17	Н	192	96%		••
18	Ι	214	95%		·
19	J	178	94%	•	·
20	K	3543	• 82%	17%	-
21	L	211	98%		— .
22	М	218	6 2% •	37%	_
23	N	204	99%		— .
24	0	203	96%		
25	Р	18/	10%		
20	1	104	30%		•••
26	Q	187	99%		•
27	R	196	76%	• 21%	
28	S	176	98%		•
29	Т	160	99%		·
30	U	128		5% 20%	_
31	V	140	93%	• (3%
32	W	157	39% •	60%	_
33	X	156	75%	• 24%	

Mol	Chain	Length	Quality of chain	
34	Y	145	91%	• 8%
35	Ζ	136	96%	• •
36	a	148	99%	••
37	b	226	46% 54%	
38	с	115	84%	15%
39	d	125	85%	• 14%
40	е	135	93%	• 5%
41	f	110	98%	
42	g	116	97%	••
43	h	123	98%	
44	i	105	93%	• •
45	j	97	89%	11%
46	k	70	96%	• •
47	1	51	96%	• •
48	m	102	50% · 49%	
49	n	25	96%	·
50	О	106	97%	••
51	р	92	97%	••
52	q	76	89%	11%
53	r	137	88%	• 9%
54	u	120	93%	7%
55	V	156	83%	16% ·
56	W	403	96%	••

2 Entry composition (i)

There are 58 unique types of molecules in this entry. The entry contains 255550 atoms, of which 108756 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Protein transport protein Sec61 subunit alpha isoform 1.

Mol	Chain	Residues			AltConf	Trace				
1	1	461	Total 7275	C 2347	Н 3700	N 576	O 629	S 23	0	0

• Molecule 2 is a protein called Protein transport protein Sec61 subunit beta.

Mol	Chain	Residues		A	AltConf	Trace				
2	2	32	Total 524	C 171	Н 273	N 40	O 38	${ m S} { m 2}$	0	0

• Molecule 3 is a protein called Protein transport protein Sec61 subunit gamma.

Mol	Chain	Residues		A	AltConf	Trace				
3	3	66	Total 1105	C 351	Н 571	N 92	O 86	${ m S}{ m 5}$	0	0

• Molecule 4 is a protein called Stress-associated endoplasmic reticulum protein.

Mol	Chain	Residues		ŀ	AltConf	Trace				
4	4	31	Total 504	C 145	Н 260	N 55	O 43	S 1	0	0

• Molecule 5 is a protein called Translocon-associated protein subunit alpha.

Mol	Chain	Residues	Atoms						AltConf	Trace
5	5	178	Total	С	Н	Ν	Ο	\mathbf{S}	0	0
0	0	110	2813	919	1390	231	269	4	0	0

• Molecule 6 is a protein called Translocon-associated protein subunit beta.

Mol	Chain	Residues			AltConf	Trace				
6	6	162	Total 2507	C 813	Н 1244	N 212	O 236	${S \over 2}$	0	0

• Molecule 7 is a protein called Translocon-associated protein subunit gamma.

Mol	Chain	Residues	Atoms					AltConf	Trace	
7	7	179	Total 2942	C 947	H 1490	N 239	O 263	${ m S} { m 3}$	0	0

• Molecule 8 is a protein called Translocon-associated protein subunit delta.

Mol	Chain	Residues	Atoms					AltConf	Trace	
8	8	150	Total 2335	C 755	Н 1149	N 199	O 229	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called Calnexin.

Mol	Chain	Residues	Atoms						AltConf	Trace
9	9	38	Total 610	C 206	Н 309	N 43	O 50	${S \over 2}$	0	0

• Molecule 10 is a protein called Ribosomal protein L8.

Mol	Chain	Residues	Atoms						AltConf	Trace
10	А	248	Total 3892	C 1189	Н 1994	N 389	0 314	S 6	0	0

• Molecule 11 is a protein called Nascent chain.

Mol	Chain	Residues		Atoms						Trace
11	В	59	Total 856	C 283	H 424	N 67	O 80	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 12 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues			Atom	S			AltConf	Trace
12	С	362	Total 5937	C 1812	Н 3054	N 577	O 480	S 14	0	0

• Molecule 13 is a protein called Ribosomal_L18_c domain-containing protein.

Mol	Chain	Residues	Atoms						AltConf	Trace
13	D	293	Total 4816	C 1512	Н 2425	N 438	0 427	S 14	0	0

• Molecule 14 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
14	Е	223	Total 3754	C 1154	Н 1963	N 341	O 293	S 3	0	0

• Molecule 15 is a protein called Ribosomal Protein uL30.

Mol	Chain	Residues	Atoms					AltConf	Trace	
15	F	225	Total	C	H	N	0	S	0	0
			3872	1205	1997	358	303	9		

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F	61	ARG	GLY	conflict	UNP G1TUB1
F	93	ARG	GLY	conflict	UNP G1TUB1
F	131	MET	VAL	conflict	UNP G1TUB1
F	153	ILE	VAL	conflict	UNP G1TUB1

• Molecule 16 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues	Atoms						AltConf	Trace
16	G	233	Total 3908	C 1199	Н 2029	N 361	0 315	${S \over 4}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	244	GLY	CYS	conflict	UNP G1STW0

• Molecule 17 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues			Atom	S			AltConf	Trace
17	Н	190	Total	C	H	N	0	S	0	0
			3114	954	1598	284	272	6		

• Molecule 18 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues			Atom	s			AltConf	Trace
18	Ι	205	Total 3380	C 1056	Н 1716	N 321	0 274	S 13	0	0

• Molecule 19 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
19	J	170	Total 2763	C 861	Н 1401	N 254	O 241	S 6	0	0

• Molecule 20 is a RNA chain called 28S rRNA.

Mol	Chain	Residues			Ato	ms			AltConf	Trace
20	K	3543	Total 114335	C 33833	H 38363	N 13910	O 24686	Р 3543	0	0

• Molecule 21 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		Atoms						Trace
21	L	210	Total 3525	C 1065	Н 1823	N 354	0 279	$\frac{S}{4}$	0	0

There are 170 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
L	1	MET	ARG	conflict	UNP G1TPV0
L	3	PRO	LEU	conflict	UNP G1TPV0
L	4	SER	ALA	conflict	UNP G1TPV0
L	6	ASN	-	insertion	UNP G1TPV0
L	7	GLY	ALA	conflict	UNP G1TPV0
L	9	ILE	ARG	conflict	UNP G1TPV0
L	10	LEU	ARG	conflict	UNP G1TPV0
L	11	LYS	LEU	conflict	UNP G1TPV0
L	12	PRO	ALA	conflict	UNP G1TPV0
L	13	HIS	LYS	conflict	UNP G1TPV0
L	14	PHE	ALA	conflict	UNP G1TPV0
L	15	HIS	LEU	conflict	UNP G1TPV0
L	17	ASP	PHE	conflict	UNP G1TPV0
L	18	TRP	PHE	conflict	UNP G1TPV0
L	19	GLN	SER	conflict	UNP G1TPV0
L	20	ARG	SER	conflict	UNP G1TPV0
L	21	ARG	SER	conflict	UNP G1TPV0
L	23	ALA	ILE	conflict	UNP G1TPV0
L	25	TRP	-	insertion	UNP G1TPV0
L	26	PHE	LEU	conflict	UNP G1TPV0
L	27	ASN	ALA	conflict	UNP G1TPV0
L	28	GLN	PHE	conflict	UNP G1TPV0
L	29	PRO	SER	conflict	UNP G1TPV0
L	30	ALA	PHE	conflict	UNP G1TPV0
L	31	ARG	LEU	conflict	UNP G1TPV0

				0	DC
Chain	Residue	Modelled	Actual	Comment	Reference
	33	ILE	-	insertion	UNP GITPV0
	34	ARG	THR	conflict	UNP GITPV0
	35	ARG	PHE	conflict	UNP G1TPV0
L	37	LYS	MET	conflict	UNP G1TPV0
L	38	ALA	GLY	conflict	UNP G1TPV0
L	39	ARG	MET	conflict	UNP G1TPV0
L	40	GLN	THR	conflict	UNP G1TPV0
L	41	ALA	GLY	conflict	UNP G1TPV0
L	42	ARG	PRO	conflict	UNP G1TPV0
L	43	ALA	VAL	conflict	UNP G1TPV0
L	44	ARG	SER	conflict	UNP G1TPV0
L	45	ARG	TRP	conflict	UNP G1TPV0
L	46	ILE	VAL	conflict	UNP G1TPV0
L	48	PRO	ASN	conflict	UNP G1TPV0
L	49	ARG	PHE	conflict	UNP G1TPV0
L	50	PRO	SER	conflict	UNP G1TPV0
L	51	ALA	SER	conflict	UNP G1TPV0
L	52	ALA	SER	conflict	UNP G1TPV0
L	53	GLY	ALA	conflict	UNP G1TPV0
L	54	PRO	GLU	conflict	UNP G1TPV0
L	55	ILE	LEU	conflict	UNP G1TPV0
L	56	ARG	SER	conflict	UNP G1TPV0
L	58	ILE	PHE	conflict	UNP G1TPV0
L	59	VAL	LEU	conflict	UNP G1TPV0
L	60	ARG	GLY	conflict	UNP G1TPV0
L	61	CYS	ALA	conflict	UNP G1TPV0
L	62	PRO	GLU	conflict	UNP G1TPV0
L	63	THR	GLY	conflict	UNP G1TPV0
L	64	VAL	PHE	conflict	UNP G1TPV0
L	66	TYR	-	insertion	UNP G1TPV0
L	67	HIS	-	insertion	UNP G1TPV0
L	68	THR	GLY	conflict	UNP G1TPV0
L	70	VAL	-	insertion	UNP G1TPV0
L	71	ARG	-	insertion	UNP G1TPV0
L	72	ALA	-	insertion	UNP G1TPV0
L	73	GLY	-	insertion	UNP G1TPV0
L	75	GLY	-	insertion	UNP G1TPV0
L	76	PHE	THR	conflict	UNP G1TPV0
L	80	GLU	-	insertion	UNP G1TPV0
L	81	LEU	-	insertion	UNP G1TPV0
L	83	VAL	TYR	conflict	UNP G1TPV0
L	84	ALA	SER	conflict	UNP G1TPV0

Continu		vious puye			
Chain	Residue	Modelled	Actual	Comment	Reference
L	85	GLY	PHE	conflict	UNP G1TPV0
L	86	ILE	SER	conflict	UNP G1TPV0
L	87	HIS	ARG	conflict	UNP G1TPV0
L	88	LYS	CYS	conflict	UNP G1TPV0
L	89	LYS	THR	conflict	UNP G1TPV0
L	90	VAL	LEU	conflict	UNP G1TPV0
L	92	ARG	-	insertion	UNP G1TPV0
L	93	THR	-	insertion	UNP G1TPV0
L	94	ILE	CYS	conflict	UNP G1TPV0
L	95	GLY	ARG	conflict	UNP G1TPV0
L	96	ILE	ASP	conflict	UNP G1TPV0
L	100	PRO	LEU	conflict	UNP G1TPV0
L	101	ARG	PHE	conflict	UNP G1TPV0
L	104	ASN	ARG	conflict	UNP G1TPV0
L	105	LYS	GLY	conflict	UNP G1TPV0
L	109	SER	MET	conflict	UNP G1TPV0
L	110	LEU	PRO	conflict	UNP G1TPV0
L	111	GLN	ILE	conflict	UNP G1TPV0
L	112	ALA	VAL	conflict	UNP G1TPV0
L	113	ASN	ARG	conflict	UNP G1TPV0
L	114	VAL	ALA	conflict	UNP G1TPV0
L	115	GLN	THR	conflict	UNP G1TPV0
L	116	ARG	PHE	conflict	UNP G1TPV0
L	?	-	TRP	deletion	UNP G1TPV0
L	?	-	MET	deletion	UNP G1TPV0
L	118	LYS	PRO	conflict	UNP G1TPV0
L	119	GLU	ALA	conflict	UNP G1TPV0
L	120	TYR	THR	conflict	UNP G1TPV0
L	123	LYS	SER	conflict	UNP G1TPV0
L	124	LEU	SER	conflict	UNP G1TPV0
L	125	VAL	ARG	conflict	UNP G1TPV0
L	127	PHE	LYS	conflict	UNP G1TPV0
L	130	LYS	PRO	conflict	UNP G1TPV0
L	131	PRO	ALA	conflict	UNP G1TPV0
L	132	SER	ARG	conflict	UNP G1TPV0
L	133	ALA	THR	conflict	UNP G1TPV0
L	134	PRO	PHE	conflict	UNP G1TPV0
L	135	LYS	VAL	conflict	UNP G1TPV0
L	136	LYS	TRP	conflict	UNP G1TPV0
L	137	GLY	TYR	conflict	UNP G1TPV0
L	138	ASP	ARG	conflict	UNP G1TPV0
L	139	SER	THR	conflict	UNP G1TPV0

				0	
Chain	Residue	Modelled	Actual	Comment	Reference
	140	SER	VAL	conflict	UNP GITPV0
	141	ALA	GLY	conflict	UNP GITPV0
	142	GLU	GLN	conflict	UNP G1TPV0
L	143	GLU	ARG	conflict	UNP G1TPV0
L	144	LEU	THR	conflict	UNP G1TPV0
L	145	LYS	MET	conflict	UNP G1TPV0
L	146	LEU	GLY	conflict	UNP G1TPV0
L	147	ALA	ARG	conflict	UNP G1TPV0
L	148	THR	MET	conflict	UNP G1TPV0
L	149	GLN	GLY	conflict	UNP G1TPV0
L	151	THR	ALA	conflict	UNP G1TPV0
L	152	GLY	PRO	conflict	UNP G1TPV0
L	153	PRO	ALA	conflict	UNP G1TPV0
L	154	VAL	ASP	conflict	UNP G1TPV0
L	155	MET	LEU	conflict	UNP G1TPV0
L	156	PRO	ALA	conflict	UNP G1TPV0
L	157	ILE	ARG	conflict	UNP G1TPV0
L	159	ASN	LEU	conflict	UNP G1TPV0
L	161	PHE	GLU	conflict	UNP G1TPV0
L	162	LYS	PRO	conflict	UNP G1TPV0
L	163	LYS	GLY	conflict	UNP G1TPV0
L	164	GLU	GLY	conflict	UNP G1TPV0
L	165	LYS	HIS	conflict	UNP G1TPV0
L	167	ARG	PRO	conflict	UNP G1TPV0
L	168	VAL	LEU	conflict	UNP G1TPV0
L	169	ILE	PRO	conflict	UNP G1TPV0
L	170	THR	VAL	conflict	UNP G1TPV0
L	171	GLU	LEU	conflict	UNP G1TPV0
L	172	GLU	VAL	conflict	UNP G1TPV0
L	174	LYS	VAL	conflict	UNP G1TPV0
L	175	ASN	ARG	conflict	UNP G1TPV0
L	176	PHE	LEU	conflict	UNP G1TPV0
L	177	LYS	GLN	conflict	UNP G1TPV0
L	178	ALA	ASP	conflict	UNP G1TPV0
L	179	PHE	HIS	conflict	UNP G1TPV0
L	181	SER	ILE	conflict	UNP G1TPV0
L	182	LEU	PRO	conflict	UNP G1TPV0
L	183	ARG	ALA	conflict	UNP G1TPV0
L	184	MET	GLY	conflict	UNP G1TPV0
L	185	ALA	ARG	conflict	UNP G1TPV0
L	186	ARG	HIS	conflict	UNP G1TPV0
L	187	ALA	GLY	conflict	UNP G1TPV0

Chain	Residue	Modelled	Actual	Comment	Reference
L	188	ASN	CYS	conflict	UNP G1TPV0
L	189	ALA	VAL	conflict	UNP G1TPV0
L	190	ARG	LEU	conflict	UNP G1TPV0
L	192	PHE	ARG	conflict	UNP G1TPV0
L	193	GLY	ALA	conflict	UNP G1TPV0
L	194	ILE	ARG	conflict	UNP G1TPV0
L	195	ARG	THR	conflict	UNP G1TPV0
L	196	ALA	GLU	conflict	UNP G1TPV0
L	199	ALA	LYS	conflict	UNP G1TPV0
L	200	LYS	SER	conflict	UNP G1TPV0
L	202	ALA	PRO	conflict	UNP G1TPV0
L	203	ALA	GLN	conflict	UNP G1TPV0
L	204	GLU	HIS	conflict	UNP G1TPV0
L	205	GLN	PHE	conflict	UNP G1TPV0
L	207	VAL	THR	conflict	UNP G1TPV0
L	208	GLU	GLY	conflict	UNP G1TPV0
L	209	LYS	CYS	conflict	UNP G1TPV0
L	210	LYS	ARG	conflict	UNP G1TPV0
L	211	LYS	HIS	conflict	UNP G1TPV0

• Molecule 22 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
22	М	138	Total 2349	С 727	Н 1212	N 221	0 182	S 7	0	0

• Molecule 23 is a protein called Ribosomal protein L15.

Mol	Chain	Residues			Atom	S			AltConf	Trace
23	Ν	203	Total 3454	C 1072	Н 1753	N 359	O 266	$\frac{S}{4}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues	Atoms						AltConf	Trace
24	О	199	Total 3410	C 1051	H 1780	N 319	0 255	$\frac{S}{5}$	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
0	174	LEU	ILE	conflict	UNP A0A0N8ETI8

Chain	Residue	Modelled	Actual	Comment	Reference
0	194	ASP	GLU	conflict	UNP A0A0N8ETI8

• Molecule 25 is a protein called uL22.

Mol	Chain	Residues	Atoms						AltConf	Trace
25	Р	181	Total 3012	C 924	Н 1542	N 282	0 254	S 10	0	0

• Molecule 26 is a protein called Ribosomal protein L18.

Mol	Chain	Residues	Atoms						AltConf	Trace
26	Q	187	Total 3153	C 946	H 1638	N 315	O 250	$\frac{S}{4}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Q	134	ARG	CYS	conflict	UNP F6QKI9

• Molecule 27 is a protein called Ribosomal protein L19.

Mol	Chain	Residues	Atoms						AltConf	Trace
27	В	155	Total	С	Η	Ν	0	\mathbf{S}	0	0
	n	100	2730	808	1436	278	199	9	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference	
R	38	ARG	HIS	conflict	UNP G1TYL6	
R	151	ARG	HIS	conflict	UNP G1TYL6	

• Molecule 28 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues	Atoms						AltConf	Trace
28	S	176	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
20	5	110	2972	930	1510	285	236	11	0	0

• Molecule 29 is a protein called 60S ribosomal protein L21.

Mol	Chain	Residues	Atoms						AltConf	Trace
29	Т	159	Total 2667	C 823	Н 1369	N 252	O 217	S 6	0	0

• Molecule 30 is a protein called Large ribosomal subunit protein eL22.

Mol	Chain	Residues	Atoms						AltConf	Trace
30	U	102	Total 1693	C 534	Н 859	N 146	0 152	${ m S} { m 2}$	0	0

There are 5 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
U	18	LEU	VAL	conflict	UNP Q4R5I3
U	62	SER	THR	conflict	UNP Q4R5I3
U	63	LEU	ILE	conflict	UNP Q4R5I3
U	106	THR	SER	conflict	UNP Q4R5I3
U	126	GLU	ASP	conflict	UNP Q4R5I3

• Molecule 31 is a protein called Ribosomal protein L23.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
31	V	131	Total 2019	C 618	Н 1040	N 184	0 172	${ m S}{ m 5}$	0	0

• Molecule 32 is a protein called Ribosomal protein L24.

Mol	Chain	Residues		_	Atom	S			AltConf	Trace
32	W	63	Total 1070	C 337	Н 542	N 103	O 85	${ m S} { m 3}$	0	0

• Molecule 33 is a protein called Large ribosomal subunit protein uL23 N-terminal domaincontaining protein.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
33	Х	118	Total 2008	C 618	Н 1041	N 181	0 167	S 1	0	0

• Molecule 34 is a protein called Ribosomal protein L26.

Mol	Chain	Residues			Atom	S			AltConf	Trace
34	Y	134	Total 2320	C 700	Н 1205	N 226	O 186	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
35	Ζ	135	Total 2292	C 714	Н 1185	N 208	0 182	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
36	a	147	Total 2372	С 734	Н 1210	N 239	0 185	${S \over 4}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
37	b	104	Total 1771	C 527	Н 923	N 189	O 129	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called Large ribosomal subunit protein eL30.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
38	С	98	Total 1557	C 481	Н 796	N 134	0 140	S 6	0	0

• Molecule 39 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
39	d	107	Total 1820	C 560	H 932	N 171	0 155	$\frac{S}{2}$	0	0

• Molecule 40 is a protein called Ribosomal protein L32.

Mol	Chain	Residues			Atom	S			AltConf	Trace
40	е	128	Total 2203	${ m C}$ 667	Н 1150	N 216	O 165	${ m S}{ m 5}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L35a.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
41	f	109	Total 1789	$\begin{array}{c} \mathrm{C} \\ 555 \end{array}$	Н 913	N 174	0 143	${S \over 4}$	0	0

• Molecule 42 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues			Atom	S			AltConf	Trace
42	g	114	Total 1910	C 566	Н 1004	N 187	O 147	S 6	0	0

• Molecule 43 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues			AltConf	Trace				
43	h	122	Total 2161	C 640	Н 1148	N 204	O 168	S 1	0	0

• Molecule 44 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues			AltConf	Trace				
44	i	102	Total 1747	C 520	Н 917	N 176	O 129	${ m S}{ m 5}$	0	0

• Molecule 45 is a protein called Ribosomal protein L37.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
45	j	86	Total 1448	C 434	Н 743	N 155	0 111	${S \atop 5}$	0	0

• Molecule 46 is a protein called Large ribosomal subunit protein eL38.

Mol	Chain	Residues			Atom	S			AltConf	Trace
46	k	69	Total 1206	C 366	Н 637	N 103	O 99	S 1	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
k	24	LYS	ASN	conflict	UNP G1U001

• Molecule 47 is a protein called 60S ribosomal protein L39-like.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
47	1	50	Total 928	C 286	Н 481	N 96	O 64	S 1	0	0

• Molecule 48 is a protein called eL40.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
48	m	52	Total 899	C 266	Н 470	N 90	O 67	${ m S}{ m 6}$	0	0

• Molecule 49 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues		ŀ	AltConf	Trace				
49	n	25	Total 529	C 145	Н 289	N 64	O 28	${ m S} { m 3}$	0	0

• Molecule 50 is a protein called 60S ribosomal protein L36a-like.

Mol	Chain	Residues			AltConf	Trace				
50	О	104	Total 1778	C 533	Н 927	N 174	0 138	S 6	0	0

• Molecule 51 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
51	р	91	Total 1470	C 445	Н 762	N 136	O 120	S 7	0	0

• Molecule 52 is a RNA chain called P-site tRNA.

Mol	Chain	Residues			Ator	\mathbf{ns}			AltConf	Trace
52	q	76	Total 2439	C 723	Н 823	N 291	O 527	Р 75	0	0

• Molecule 53 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
53	r	124	Total 2046	C 616	Н 1052	N 205	0 167	S 6	0	0

• Molecule 54 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace	
54	11	120	Total	С	Η	Ν	Ο	Р	0	0
04	u	120	3854	1141	1296	456	842	119	0	0

• Molecule 55 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace	
55	V	156	Total	\mathbf{C}	Η	Ν	Ο	Р	0	0
00	v	100	4997	1480	1683	585	1094	155	0	0

• Molecule 56 is a protein called Ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace	
56	117	304	Total	С	Η	Ν	0	\mathbf{S}	0	0
50	vv	034	6487	2020	3315	597	542	13	0	0

• Molecule 57 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
57	Ι	1	Total Mg 1 1	0
57	Κ	201	Total Mg 201 201	0
57	V	1	Total Mg 1 1	0
57	a	1	Total Mg 1 1	0
57	g	1	Total Mg 1 1	0
57	j	1	Total Mg 1 1	0
57	u	7	Total Mg 7 7	0
57	V	5	Total Mg 5 5	0

• Molecule 58 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
58	g	1	Total Zn 1 1	0
58	j	1	Total Zn 1 1	0
58	m	1	Total Zn 1 1	0
58	О	1	Total Zn 1 1	0
58	р	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Protein transport protein Sec61 subunit alpha isoform 1

• Molecule 10: Ribosomal protein L8

hain A: 96% · ·	
C2 111 1240 1758 175	
Molecule 11: Nascent chain	
hain B: 25% • 74%	
ASP SER CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	
PELN LYS PELN PELN PELN PELN PELN PELN PELN PELN	
CLY CLY CLY CLY CLY CLY CLY CLA CLA CLA CLA CLA CLA CLA CLA CLA CLA	A82
L84 F85 F85 F85 F85 F105 F106 F106 F106 F106 F106 F106 F107 F106 F107 F108 F109 F101 F129	
Molecule 12: Large ribosomal subunit protein uL4	
hain C: 84% • 15%	
A2 C3 C3 C3 M96 M96 M179 M122 M122 M128	
LYS ALA ASP ALA ARG ARG GLU CPRO GLU ASP PRO ALA ALA ALA	
Molecule 13: Ribosomal_L18_c domain-containing protein	
hain D: 97%	
F3 F3 M1 15 M1 36 M2 35 M2 35 M2 42 M2 42 M3 42 M2 42 M3 42 M2 42 M3 42 M3 42 M3 42 </td <td></td>	
Molecule 14: 60S ribosomal protein L6	
hain E: 76% 23%	

MET MET GLY GLY GLV GLU LYS PRO ALA ALA ALA ALA	ASP ALSP THR LYS SER SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PRO PRO SER SER ARG GLU ARG CLU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG
ASP ASP LYS ASN ASN ASN ASS P228 AS22 HSC HIS	GLU GLU GLU GLU CLU CLU CLU CLU CLU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
• Molecule 15:	Ribosomal Protein uL30	
Chain F:	91%	9%
MET GLU GLY ALA GLU GLU CLYS LYS LYS LYS VAL	ALA PRO THR THR THR THR THR TRN TRN TRN ARG ARG ARG ARG ARG	
• Molecule 16:	60S ribosomal protein L7a	
Chain G:	72%	27%
MET SER SER TYR ARG LEU GLY GLY CYS CYS	CLU CLU CLU CLU CLU ARK ARK ARK ARK CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	VAL VAL GLY ALA ALA PRO CLU GLY GLY GLY GLY GLY GLY GLY GLY
SER GLU GLU LEU LEU THR CYS SER THR THR THR	AIS ASP THR TRP ASP ASP ASP ASP ASP ASP ASP A176 A171 A171 A177 A177 A177 A177 A177	D284 A311 K312 E313 L314 A315 K317 K317 L318 K317 C319
• Molecule 17:	60S ribosomal protein L9	
Chain H:	96%	• •
M1 E14 K21 D58 D177	A190 ASP GLU	
• Molecule 18:	60S ribosomal protein L10	
Chain I:	95%	
MET G2 SER CYS CYS GLY ALA ASP ASP - ARG		
• Molecule 19:	60S ribosomal protein L11	
Chain J:	94%	
MET ALA GLN GLV GLV GLV B3 D31	K118 B129 G177 LYS	
• Molecule 20:	28S rRNA	
Chain K:	82%	17%
	WORLDWIDE PROTEIN DATA BANK	

• Molecule 25: uL22	
Chain P:	96% ••
MET V2 C57 C144 C144 C144 F169 F160 F163 F163 F165 F163 F165 F165 F165 F165 F170 S171	K176 K179 H181 A182 A182 A182 GLU
• Molecule 26: Ribosomal protein L1	8
Chain Q:	99%
G2 S1 30 N188	
• Molecule 27: Ribosomal protein L1	9
Chain R: 76%	• 21%
MET 82 82 M3 M76 M76 M119 M119 M119 M119 M119 A150 A151 A150 A150 A150 A150 A150 A150	ARG ARG ARG ARG ARG ARG GLU GLU CLV GLU CLV GLU CLV GLU CLV GLU CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV
• Molecule 28: 60S ribosomal protein	L18a
Chain S:	98% •
M1 R23 R17 F176 F176	
• Molecule 29: 60S ribosomal protein	L21
Chain T:	99% •
MET A100	
• Molecule 30: Large ribosomal subu	nit protein eL22
Chain U: 74%	5% 20%
MET ALA PRD PRD LLYS LLYS LLYS LLYS LLYS LLYS LLYS LLS CLY CLS CLY CLS CLY CLS CLY CLS CLY CLS CLY CLS CLS CLY CLS CLY CLS CLY CLS CLY CLS CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	Re5 866 866 868 868 868 868 868 8111 01
• Molecule 31: Ribosomal protein L2	3
Chain V:	93% • 6%
MET SER LYS ARG GLY GLY SER BIO A140	

• Molecule 32:	Ribosomal protei	in L24			
Chain W:	39%	·	60%		
M1 Q63 SER GLU GLU CLE CLU CLE CLN CLY CLN CLY CLN	THR ARG ARG ALA ALA CVAL LYS PHE GLN ALA ALA ALA THR THR GLY	ALA SER LEU ALA ASP ALA ALA ALA LYS	ARG ASN GLN CLYS PRO GLU VAL ARG CLU GLU	GLN ALA ALA ALA ALA CYS GLU ALA LYS CYS	L VS
ALA SER LYS LYS THR ALA ALA ALA ALA ALA LYS	ALA PRO THR LYS LYS ALA ALA PRO CLY CYS VAL VAL	PRO VAL LYS VAL SER ALA PRO ARG VAL	GLY CILYS ARG		
• Molecule 33:	Large ribosomal	subunit prote	ein uL23 N-termin	al domain-con	taining protein
Chain X:		75%	·	24%	
MET PRO PRO LYS ALA ALA LYS CLV GLU PRO PRO	PRO PRO LYS VAL GLU GLU ALA ALA ALA LEU LYS ALA	LYS LYS ALA VAL LEU LYS GLY VAL HIS	SER HIS LYS LYS LYS LYS K39 S85 1156		
• Molecule 34:	Ribosomal protei	in L26			
Chain Y:		91%		• 8%	
M1 S46 74 Y74 TY8 LYS GLU GLU GLU	THR TLE GLU GLU MET GLU GLU				
• Molecule 35:	60S ribosomal pr	otein L27			
Chain Z:		96%		•••	
MET G2 S34 K59 D30 F2 D30 D32	F136				
• Molecule 36:	60S ribosomal pr	otein L27a			
Chain a:		99%			
MET P2 H40 K94 A148					
• Molecule 37:	60S ribosomal pr	otein L29			
Chain b:	46%		54%		
MET A2 K55 F 669 A69 A71 A71	A74 A74 L75 L75 L75 L75 P70 L75 CLU VAL L75 CLU VAL L75 P70	THR ILE PRO LYS GLY VB9 K117 LEU	ARG PRO PRO THR THR LYS ALA ALA ALA THR GLU	GLN ILE LYS GLY LYS VAL LYS ALA ALA ALA ALA TLE ILE IVS	ALA GLN GLN GLN GLN GLN GLN
ILE LYS SER LYS GLY GLY GLY ALA ALA	GLU THR LYS PRO PRO ALA GLN GLN GLU CYS PRO	ALA GLN GLN GLN ALA LYS PRO ALA	GLN ALA GLN GLN GLN PRO PRO ALA GLN GLN GLN GLY LYS	PRO LYS ALA GLN GLN GLN LYS PRO PRO	GLN GLN GLN
ALA LYS PRO LYS LYS ALA GLN GLN GLN GLN THR LYS PRO	LYS ALA GLN ALA THR PRO ALA				
		W P R C	PDB PDB TEIN DATA BANK		

• Molecule 38: Large ribosomal subunit protein eL30 Chain c: 84% 15% MET VAL ALA ALA LYS LYS THR LYS LYS LYS MET PRO GLU GLU GLN GLY GLU LYS • Molecule 39: 60S ribosomal protein L31 Chain d: 85% 14% MET ALA ALA ALA ALA LVS GLY GLY CLYS CLYS CLYS CLYS SER ALA ALA • Molecule 40: Ribosomal protein L32 Chain e: 93% • 5% ARG SER GLU GLU ASN GLU • Molecule 41: 60S ribosomal protein L35a Chain f: •• 98% MET • Molecule 42: 60S ribosomal protein L34 Chain g: 97% . . • Molecule 43: 60S ribosomal protein L35 Chain h: 98% • Molecule 44: 60S ribosomal protein L36 Chain i: 93% •

• Molecule 45:	Ribosomal protein L37	
Chain j:	89%	11%
MET T2 K87 ALA ALA ALA ALA ALA SELA SELA		
• Molecule 46:	Large ribosomal subunit protein eL38	
Chain k:	96%	
MET P2 K29 B30 K70		
• Molecule 47:	60S ribosomal protein L39-like	
Chain l:	96%	•••
MET S2 K5 L51		
• Molecule 48:	eL40	
Chain m:	50% • 49%	
MET GLY ASP ASP PRO GLU SER GLY GLY CYS ILE PRO	PROJ PROJ CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	GLY GLY I51 R57 K102
• Molecule 49:	60S ribosomal protein L41	
Chain n:	96%	·
M1 M10 K25		
• Molecule 50:	60S ribosomal protein L36a-like	
Chain o:	97%	
MET V2 C77 Q105		
• Molecule 51:	60S ribosomal protein L37a	
Chain p:	97%	

• Molecule 52: P-site tRNA 11% Chain q: 89% 11% • Molecule 53: 60S ribosomal protein L28 Chain r: 88% . 9% VAL LYS ARG LYS ARG ARG ARG PRO PRO THR THR SER SER MET • Molecule 54: 5S rRNA Chain u: 93% 7% • Molecule 55: 5.8S rRNA Chain v: 83% 16% 5 <mark>8</mark> • Molecule 56: Ribosomal protein L3 Chain w: 96% ILE ALA LYS CLU GLU GLV ALA

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	282068	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	54	Depositor
Minimum defocus (nm)	1900	Depositor
Maximum defocus (nm)	2700	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.218	Depositor
Minimum map value	-0.064	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.0231	Depositor
Map size (Å)	562.7185, 562.7185, 562.7185	wwPDB
Map dimensions	420, 420, 420	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.339806, 1.339806, 1.339806	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.31	1/3651~(0.0%)	0.51	3/4947~(0.1%)	
2	2	0.29	0/258	0.42	0/348	
3	3	0.26	0/544	0.48	0/728	
4	4	0.26	0/245	0.54	0/325	
5	5	0.26	0/1457	0.47	0/1980	
6	6	0.26	0/1296	0.48	0/1764	
7	7	0.90	3/1482~(0.2%)	0.90	6/2001~(0.3%)	
8	8	0.24	0/1215	0.46	0/1656	
9	9	0.24	0/311	0.39	0/427	
10	А	0.35	0/1936	0.61	0/2596	
11	В	0.27	0/446	0.48	0/610	
12	\mathbf{C}	0.32	0/2937	0.55	0/3946	
13	D	0.33	0/2437	0.51	0/3264	
14	Ε	0.30	0/1825	0.53	0/2445	
15	F	0.34	0/1911	0.55	0/2549	
16	G	0.30	0/1910	0.51	0/2569	
17	Н	0.31	0/1535	0.54	0/2063	
18	Ι	0.33	0/1702	0.55	0/2272	
19	J	0.30	0/1385	0.55	0/1852	
20	Κ	0.67	0/84980	0.81	14/132536~(0.0%)	
21	L	0.31	0/1733	0.59	0/2316	
22	М	0.32	0/1158	0.56	1/1547~(0.1%)	
23	Ν	0.37	0/1746	0.61	0/2338	
24	0	0.34	0/1662	0.54	0/2222	
25	Р	0.39	1/1498~(0.1%)	0.69	3/2003~(0.1%)	
26	\mathbf{Q}	0.34	0/1539	0.60	0/2054	
27	R	0.30	0/1310	0.58	0/1734	
28	S	0.36	0/1501	0.55	0/2012	
29	Т	0.34	0/1326	0.56	0/1770	
30	U	0.30	0/848	0.50	0/1138	
31	V	0.33	0/993	0.52	0/1332	
32	W	0.36	0/541	0.53	0/720	

Mol Chain		Bo	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	Х	0.32	0/984	0.50	0/1323	
34	Y	0.32	0/1132	0.55	0/1504	
35	Ζ	0.34	0/1130	0.53	0/1507	
36	a	0.34	0/1191	0.55	0/1590	
37	b	0.28	0/861	0.54	0/1138	
38	с	0.33	0/771	0.48	0/1034	
39	d	0.34	0/903	0.56	0/1216	
40	е	0.34	0/1071	0.57	0/1429	
41	f	0.37	0/895	0.58	0/1198	
42	g	0.34	0/916	0.59	0/1220	
43	h	0.30	0/1021	0.54	0/1348	
44	i	0.30	0/841	0.58	0/1112	
45	j	0.37	0/720	0.63	0/952	
46	k	0.31	0/575	0.50	0/761	
47	l	0.31	0/459	0.57	0/608	
48	m	0.32	0/435	0.55	0/575	
49	n	0.26	0/241	0.75	0/305	
50	0	0.33	0/864	0.56	0/1140	
51	р	0.34	0/718	0.60	0/953	
52	q	0.27	0/1805	0.75	0/2809	
53	r	0.33	0/1010	0.58	0/1354	
54	u	0.67	0/2858	0.77	0/4455	
55	V	0.67	0/3701	0.80	1/5766~(0.0%)	
56	W	0.34	0/3240	0.53	0/4339	
All	All	0.56	5/157660~(0.0%)	0.72	28/231700~(0.0%)	

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
7	7	162	PRO	CG-CD	-27.68	0.59	1.50
7	7	162	PRO	CB-CG	16.64	2.33	1.50
1	1	332	PRO	CG-CD	-8.29	1.23	1.50
7	7	162	PRO	N-CD	5.66	1.55	1.47
25	Р	158	PRO	CG-CD	-5.51	1.32	1.50

All (28) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
7	7	162	PRO	CB-CG-CD	-27.28	0.11	106.50
25	Р	158	PRO	N-CD-CG	-15.91	79.33	103.20
7	7	161	ASN	C-N-CD	13.51	156.78	128.40
7	7	162	PRO	CA-N-CD	-12.49	94.01	111.50

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	332	PRO	CA-CB-CG	-11.07	82.97	104.00
1	1	332	PRO	N-CD-CG	-11.03	86.65	103.20
7	7	162	PRO	CA-CB-CG	-9.39	86.16	104.00
25	Р	158	PRO	CA-N-CD	-7.38	101.16	111.50
20	K	3741	С	N3-C2-O2	-7.38	116.74	121.90
20	К	2023	С	N1-C2-O2	-7.22	114.57	118.90
25	Р	158	PRO	CA-CB-CG	-6.54	91.57	104.00
20	K	2708	U	C2-N1-C1'	6.54	125.55	117.70
20	K	1215	С	C2-N1-C1'	6.23	125.65	118.80
20	K	2258	С	C2-N1-C1'	6.23	125.65	118.80
20	Κ	2023	C	C2-N1-C1'	-6.08	112.11	118.80
7	7	161	ASN	N-CA-CB	-5.97	99.85	110.60
20	K	3741	C	N1-C2-O2	5.59	122.25	118.90
20	K	417	G	O4'-C1'-N9	5.53	112.62	108.20
20	K	2258	С	C6-N1-C2	-5.50	118.10	120.30
20	K	2806	А	O4'-C1'-N9	5.27	112.42	108.20
22	М	105	THR	CA-CB-CG2	5.21	119.70	112.40
55	V	81	С	C2-N1-C1'	5.21	124.53	118.80
1	1	332	PRO	N-CA-CB	-5.20	96.88	102.60
20	K	2023	C	C6-N1-C1'	5.16	126.99	120.80
7	7	162	PRO	N-CA-CB	-5.15	96.94	102.60
20	K	1552	G	O4'-C1'-N9	5.03	112.22	108.20
20	К	2694	G	N3-C4-C5	5.02	131.11	128.60
20	K	2258	С	N3-C2-O2	-5.01	118.39	121.90

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	1	455/476~(96%)	440 (97%)	15 (3%)	0	100	100
2	2	30/96~(31%)	29 (97%)	1 (3%)	0	100	100
3	3	64/68~(94%)	61 (95%)	3 (5%)	0	100	100
4	4	29/66~(44%)	29 (100%)	0	0	100	100
5	5	174/286~(61%)	171 (98%)	3 (2%)	0	100	100
6	6	160/183~(87%)	158 (99%)	2 (1%)	0	100	100
7	7	177/185~(96%)	174 (98%)	3 (2%)	0	100	100
8	8	148/173~(86%)	146 (99%)	2 (1%)	0	100	100
9	9	34/593~(6%)	34 (100%)	0	0	100	100
10	А	246/257~(96%)	239 (97%)	7 (3%)	0	100	100
11	В	57/229~(25%)	50 (88%)	7 (12%)	0	100	100
12	С	360/425~(85%)	352 (98%)	8 (2%)	0	100	100
13	D	291/297~(98%)	286 (98%)	5 (2%)	0	100	100
14	Е	215/291~(74%)	209 (97%)	6 (3%)	0	100	100
15	F	223/247~(90%)	215 (96%)	8 (4%)	0	100	100
16	G	229/319~(72%)	228 (100%)	1 (0%)	0	100	100
17	Н	188/192~(98%)	186 (99%)	2 (1%)	0	100	100
18	Ι	201/214 (94%)	199 (99%)	2 (1%)	0	100	100
19	J	168/178~(94%)	166 (99%)	2 (1%)	0	100	100
21	L	$208/211 \ (99\%)$	203 (98%)	5 (2%)	0	100	100
22	М	136/218~(62%)	132 (97%)	4 (3%)	0	100	100
23	Ν	201/204~(98%)	198 (98%)	3 (2%)	0	100	100
24	Ο	197/203~(97%)	194 (98%)	3 (2%)	0	100	100
25	Р	179/184~(97%)	175 (98%)	4 (2%)	0	100	100
26	Q	185/187~(99%)	181 (98%)	4 (2%)	0	100	100
27	R	153/196~(78%)	152 (99%)	1 (1%)	0	100	100
28	S	174/176~(99%)	170 (98%)	4 (2%)	0	100	100
29	Т	157/160~(98%)	154 (98%)	3 (2%)	0	100	100
30	U	100/128~(78%)	97 (97%)	3 (3%)	0	100	100
31	V	129/140~(92%)	128 (99%)	1 (1%)	0	100	100
32	W	61/157~(39%)	61 (100%)	0	0	100	100
33	X	116/156~(74%)	113 (97%)	3 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
34	Y	132/145~(91%)	128 (97%)	4 (3%)	0	100	100
35	Z	133/136~(98%)	131 (98%)	2 (2%)	0	100	100
36	a	145/148 (98%)	138 (95%)	6 (4%)	1 (1%)	19	45
37	b	100/226 (44%)	98~(98%)	2 (2%)	0	100	100
38	с	96/115~(84%)	96 (100%)	0	0	100	100
39	d	105/125~(84%)	105 (100%)	0	0	100	100
40	е	126/135~(93%)	121 (96%)	5 (4%)	0	100	100
41	f	107/110~(97%)	105 (98%)	2 (2%)	0	100	100
42	g	112/116~(97%)	110 (98%)	2 (2%)	0	100	100
43	h	120/123~(98%)	118 (98%)	2 (2%)	0	100	100
44	i	100/105~(95%)	97 (97%)	3 (3%)	0	100	100
45	j	84/97~(87%)	83 (99%)	1 (1%)	0	100	100
46	k	67/70~(96%)	67 (100%)	0	0	100	100
47	1	48/51 (94%)	48 (100%)	0	0	100	100
48	m	50/102~(49%)	50 (100%)	0	0	100	100
49	n	23/25~(92%)	23 (100%)	0	0	100	100
50	О	102/106~(96%)	99~(97%)	3 (3%)	0	100	100
51	р	89/92~(97%)	84 (94%)	5 (6%)	0	100	100
53	r	122/137~(89%)	119 (98%)	3 (2%)	0	100	100
56	W	392/403~(97%)	384 (98%)	8 (2%)	0	100	100
All	All	7698/9662~(80%)	7534 (98%)	163 (2%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
36	a	40	HIS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	1	388/398~(98%)	381~(98%)	7~(2%)	54	80
2	2	28/74~(38%)	27~(96%)	1 (4%)	30	61
3	3	59/59~(100%)	55~(93%)	4 (7%)	13	34
4	4	26/55~(47%)	24 (92%)	2(8%)	10	28
5	5	157/249~(63%)	151 (96%)	6 (4%)	28	59
6	6	135/152~(89%)	133 (98%)	2(2%)	60	84
7	7	161/164~(98%)	157 (98%)	4 (2%)	42	73
8	8	130/146~(89%)	127 (98%)	3 (2%)	45	75
9	9	35/526~(7%)	35 (100%)	0	100	100
10	А	190/199~(96%)	188 (99%)	2(1%)	70	88
11	В	48/172~(28%)	46 (96%)	2 (4%)	25	55
12	С	302/347~(87%)	297~(98%)	5 (2%)	56	81
13	D	247/250~(99%)	242 (98%)	5 (2%)	50	78
14	Е	197/251~(78%)	196 (100%)	1 (0%)	86	95
15	F	196/215~(91%)	195 (100%)	1 (0%)	86	95
16	G	200/272~(74%)	196 (98%)	4 (2%)	50	78
17	Н	169/171~(99%)	164 (97%)	5 (3%)	36	67
18	Ι	175/181~(97%)	174 (99%)	1 (1%)	84	94
19	J	143/149~(96%)	140 (98%)	3 (2%)	48	77
21	L	175/176~(99%)	172 (98%)	3 (2%)	56	81
22	М	117/161~(73%)	115 (98%)	2 (2%)	56	81
23	Ν	171/172~(99%)	169 (99%)	2 (1%)	67	87
24	О	171/173~(99%)	166 (97%)	5 (3%)	37	68
25	Р	160/163~(98%)	157 (98%)	3 (2%)	52	79
26	Q	164/164~(100%)	162 (99%)	2 (1%)	67	87
27	R	138/175~(79%)	132 (96%)	6 (4%)	25	54
28	S	157/157~(100%)	153 (98%)	4 (2%)	42	73
29	Т	139/140~(99%)	139 (100%)	0	100	100
30	U	92/114 (81%)	85 (92%)	7 (8%)	11	29
31	V	101/107~(94%)	100 (99%)	1 (1%)	73	89
32	W	55/126 (44%)	54 (98%)	1 (2%)	54	80
33	Х	106/134~(79%)	105 (99%)	1 (1%)	75	91

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
34	Y	124/135~(92%)	122 (98%)	2 (2%)	58	83
35	Z	117/118 (99%)	113 (97%)	4 (3%)	32	63
36	a	119/120 (99%)	119 (100%)	0	100	100
37	b	84/172~(49%)	83 (99%)	1 (1%)	67	87
38	с	84/98~(86%)	83 (99%)	1 (1%)	67	87
39	d	98/110 (89%)	97~(99%)	1 (1%)	73	89
40	е	114/121 (94%)	112 (98%)	2 (2%)	54	80
41	f	88/89~(99%)	87 (99%)	1 (1%)	70	88
42	g	98/99~(99%)	97~(99%)	1 (1%)	73	89
43	h	109/110 (99%)	108 (99%)	1 (1%)	75	91
44	i	86/89~(97%)	82 (95%)	4 (5%)	22	51
45	j	73/80~(91%)	73 (100%)	0	100	100
46	k	64/65~(98%)	62 (97%)	2(3%)	35	66
47	1	47/48~(98%)	46 (98%)	1 (2%)	48	77
48	m	48/90~(53%)	47 (98%)	1 (2%)	48	77
49	n	24/24~(100%)	23 (96%)	1 (4%)	25	55
50	О	92/94~(98%)	91 (99%)	1 (1%)	70	88
51	р	74/75~(99%)	72 (97%)	2 (3%)	40	71
53	r	108/121 (89%)	105 (97%)	3 (3%)	38	69
56	W	342/348~(98%)	336 (98%)	6 (2%)	54	80
All	All	6725/8198 (82%)	6595~(98%)	130 (2%)	52	79

All (130) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	1	46	CYS
1	1	55	SER
1	1	143	MET
1	1	207	MET
1	1	259	GLN
1	1	332	PRO
1	1	343	HIS
2	2	88	HIS
3	3	1	MET
3	3	13	GLN

Mol	Chain	Res	Type
3	3	30	ARG
3	3	44	PHE
4	4	20	GLN
4	4	23	ASN
5	5	86	THR
5	5	132	PHE
5	5	158	PHE
5	5	198	GLU
5	5	211	TYR
5	5	234	ARG
6	6	51	SER
6	6	147	PHE
7	7	37	PHE
7	7	53	MET
7	7	109	ASN
7	7	185	LYS
8	8	38	THR
8	8	45	THR
8	8	124	ASP
10	А	111	THR
10	А	208	GLU
11	В	103	PHE
11	В	110	MET
12	С	3	CYS
12	С	69	THR
12	С	95	MET
12	С	122	TYR
12	С	179	ASP
13	D	115	MET
13	D	136	ASP
13	D	235	MET
13	D	259	ARG
13	D	262	LYS
14	Е	239	GLU
15	F	35	LYS
16	G	126	ARG
16	G	161	GLN
16	G	173	LYS
16	G	284	ASP
17	Н	1	MET
17	Н	14	GLU
17	Н	21	LYS

Mol	Chain	Res	Type
17	Н	58	ASP
17	Н	177	ASP
18	Ι	183	ASP
19	J	31	ASP
19	J	118	LYS
19	J	129	ASP
21	L	67	HIS
21	L	155	MET
21	L	163	LYS
22	М	103	LYS
22	М	131	GLN
23	N	20	ARG
23	N	187	SER
24	0	32	LYS
24	0	43	ILE
24	0	49	ARG
24	0	132	THR
24	0	178	ARG
25	Р	57	CYS
25	Р	104	LEU
25	Р	144	CYS
26	Q	130	SER
26	Q	134	ARG
27	R	3	MET
27	R	76	MET
27	R	98	ARG
27	R	119	MET
27	R	148	ASP
27	R	151	ARG
28	S	23	ARG
28	S	77	ASN
28	S	135	SER
28	S	168	THR
30	U	18	LEU
30	U	20	LYS
30	U	25	CYS
30	U	38	ASN
30	U	65	ARG
30	U	69	LYS
30	U	95	ASN
31	V	100	ASP
32	W	63	GLN

Mol	Chain	Res	Type
33	Х	85	SER
34	Y	46	SER
34	Y	74	TYR
35	Ζ	30	ASP
35	Ζ	34	SER
35	Ζ	59	LYS
35	Ζ	92	ASP
37	b	55	LYS
38	с	12	GLU
39	d	98	SER
40	е	53	ILE
40	е	86	GLU
41	f	19	ARG
42	g	73	HIS
43	h	27	GLU
44	i	29	ARG
44	i	32	ARG
44	i	46	GLU
44	i	99	LYS
46	k	29	LYS
46	k	30	ASP
47	1	5	LYS
48	m	57	ARG
49	n	10	MET
50	0	77	CYS
51	р	26	VAL
51	р	92	GLN
53	r	26	SER
53	r	58	LYS
53	r	103	HIS
56	W	216	MET
56	W	289	GLN
56	W	294	LYS
56	W	358	ARG
56	W	362	LYS
56	W	395	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
27	R	75	HIS
36	a	28	HIS

Continued from previous page...

Mol	Chain	Res	Type
44	i	20	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
20	Κ	3521/3543~(99%)	589~(16%)	55~(1%)
52	q	74/76~(97%)	8 (10%)	0
54	u	119/120~(99%)	8~(6%)	0
55	V	155/156~(99%)	26 (16%)	0
All	All	3869/3895~(99%)	631 (16%)	55 (1%)

All (631) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
20	K	5	A
20	К	12	A
20	K	13	U
20	K	25	А
20	K	35	U
20	K	39	A
20	К	42	A
20	K	56	А
20	K	59	А
20	K	64	A
20	K	65	А
20	K	71	С
20	K	73	А
20	K	91	G
20	K	98	A
20	K	109	G
20	K	110	С
20	K	118	С
20	K	119	G
20	K	120	А
20	K	122	U
20	К	126	С
20	К	135	G
20	К	136	С
20	K	157	U
20	K	159	C
20	K	173	C

Mol	Chain	Res	Type
20	K	179	G
20	K	195	С
20	K	197	A
20	K	200	U
20	K	209	U
20	K	210	С
20	K	219	G
20	K	224	U
20	K	233	U
20	K	234	G
20	K	238	С
20	K	246	G
20	K	262	G
20	K	265	С
20	K	266	С
20	K	275	C
20	K	276	С
20	K	280	G
20	K	297	U
20	K	306	A
20	K	309	С
20	K	315	G
20	K	316	U
20	K	325	U
20	K	334	A
20	K	340	С
20	K	387	G
20	K	399	G
20	K	407	A
20	Κ	409	G
$\overline{20}$	K	410	A
20	K	412	G
20	K	414	C
$2\overline{0}$	K	440	U
20	K	446	C
20	K	449	C
20	K	450	G
$2\overline{0}$	K	452	A
20	K	453	G
20	K	464	G
20	K	467	U
20	K	472	C

Mol	Chain	Res	Type
20	K	481	G
20	K	481(A)	С
20	K	482	G
20	K	483	G
20	K	485	С
20	K	486	С
20	K	492	U
20	K	493	G
20	K	497	G
20	K	498	С
20	K	499	G
20	K	505	G
20	K	510	U
20	K	642	G
20	K	643	С
20	K	647	G
20	K	658	С
20	K	661	С
20	K	666	G
20	K	672	С
20	K	696	С
20	K	697	G
20	K	704	С
20	К	705	G
20	K	730	G
20	K	731	G
20	K	738	С
20	K	738(A)	С
20	K	750	U
20	K	758	G
20	K	915	A
20	K	917	А
20	K	923	C
20	K	925	С
20	K	926	G
20	K	928	C
20	K	929	A
20	K	932	A
20	K	933	G
20	K	935	A
20	K	$935(\overline{A})$	G
20	K	936	С

Mol	Chain	Res	Type
20	К	938	С
20	Κ	939	G
20	Κ	944	A
20	К	945	U
20	Κ	956	A
20	Κ	959	G
20	Κ	960	A
20	Κ	961	G
20	К	964	A
20	Κ	965	G
20	Κ	966	A
20	Κ	967	С
20	Κ	968	С
20	K	969	С
20	К	972	С
20	К	978	G
20	Κ	983	С
20	К	1072	С
20	K	1073	G
20	К	1079	С
20	K	1082	С
20	К	1175	A
20	К	1179	U
20	K	1184	A
20	К	1187	G
20	K	1193	С
20	K	1198	G
20	Κ	1210	С
20	K	1211	G
20	Κ	1212	G
20	К	1215	С
20	К	1234	G
20	K	1235	G
20	K	1236	С
20	K	1237	C
20	K	1238	A
20	Κ	1247	U
20	K	1272	C
20	Κ	1273	G
20	K	1275	G
20	K	1280	С
20	K	1284	G

Mol	Chain	Res	Type
20	K	1287	G
20	K	1294	A
20	K	1296	G
20	K	1304	С
20	K	1314	С
20	K	1326	A
20	K	1337	A
20	K	1354	A
20	K	1359	G
20	K	1371	A
20	K	1387	A
20	K	1394	G
20	K	1397	A
20	K	1398	A
20	K	1415	G
20	K	1416	G
20	K	1420	A
20	K	1421	G
20	K	1433	A
20	K	1436	С
20	K	1437	С
20	K	1438	U
20	K	1441	С
20	K	1446	С
20	K	1448	G
20	K	1456	С
20	K	1457	G
20	K	1478	С
20	K	1498	G
20	K	1502	G
20	K	1514	U
20	K	1523	A
20	K	1534	A
20	Κ	1535	С
20	K	1547	A
20	K	1564	A
20	K	1566	С
20	K	1578	U
20	K	1588	U
20	K	1591	U
20	K	1596	U
20	K	1613	A

Mol	Chain	Res	Type
20	K	1624	G
20	K	1625	G
20	K	1631	A
20	K	1633	G
20	K	1634	A
20	K	1638	A
20	K	1640	С
20	К	1641	G
20	K	1642	A
20	K	1654	G
20	K	1661	С
20	K	1676	С
20	K	1677	U
20	K	1680	G
20	K	1721	G
20	K	1731	С
20	K	1734	G
20	K	1742	A
20	K	1750	G
20	K	1755	С
20	K	1756	U
20	K	1757	U
20	K	1761	G
20	K	1764	G
20	K	1765	A
20	K	1766	A
20	K	1769	G
20	K	1772	С
20	K	1776	A
20	K	1781	U
20	K	1787	A
20	K	1804	A
20	K	1805	A
20	K	1834	U
20	K	1835	G
20	K	1836	G
20	K	1837	A
20	K	1842	G
20	K	1847	С
20	K	1855	G
20	K	1869	G
20	K	1882	U

Mol	Chain	\mathbf{Res}	Type
20	K	1892	A
20	K	1893	С
20	К	1897	A
20	K	1910	G
20	K	1918	U
20	K	1920	С
20	K	1921	С
20	K	1922	G
20	K	1931	С
20	K	1932	A
20	K	1940	G
20	K	1948	G
20	K	1957	U
20	K	1958	A
20	K	1961	G
20	K	1964	A
20	K	1965	G
20	K	1966	С
20	K	1968	G
20	К	1972	G
20	K	1977	С
20	K	1978	С
20	К	1979	A
20	K	1984	A
20	К	1987	С
20	K	1988	G
20	К	1990	A
20	К	1991	A
20	K	1992	U
20	K	1993	С
20	K	1999	A
20	K	2001	G
20	K	2002	A
20	K	2004	U
20	K	2007	G
20	K	2011	С
20	K	2020	U
20	K	2026	A
20	K	2046	G
20	K	2047	A
20	K	2048	U
20	K	2052	G

Mol	Chain	Res	Type
20	К	2055	G
20	К	2056	G
20	К	2062	С
20	К	2064	G
20	К	2069	A
20	К	2084	U
20	K	2089	G
20	К	2090	U
20	К	2093	G
20	К	2094	С
20	К	2095	A
20	К	2100	G
20	К	2101	А
20	К	2102	G
20	К	2104	А
20	К	2105	А
20	K	2106	G
20	К	2107	А
20	K	2108	G
20	K	2110	G
20	К	2259	G
20	К	2260	С
20	К	2267	U
20	К	2269	С
20	K	2289	С
20	K	2300	A
20	K	2301	G
20	K	2313	A
20	K	2333	G
20	К	2348	G
20	K	2351	С
20	K	2364	G
20	K	2395	A
20	К	2398	U
20	K	2410	С
20	К	2417	A
20	K	2422	C
20	K	2424	G
20	К	2425	U
20	K	2441	С
20	К	2442	G
20	Κ	2447	U

Mol	Chain	Res	Type
20	K	2469	С
20	K	2475	G
20	К	2476	G
20	K	2483	G
20	K	2486	G
20	K	2488	С
20	K	2490	U
20	K	2491	С
20	K	2493	G
20	K	2503	G
20	K	2504	С
20	K	2505	С
20	K	2506	G
20	K	2512	A
20	K	2513	A
20	K	2530	U
20	K	2544	G
20	K	2545	U
20	K	2546	G
20	K	2554	U
20	K	2560	С
20	K	2564	G
20	K	2566	G
20	K	2583	С
20	K	2587	A
20	K	2588	С
20	K	2611	A
20	K	2618	G
20	K	2620	G
20	K	2627	С
20	K	2640	G
20	K	2653	С
20	K	2662	G
20	K	2663	G
20	K	2669	С
20	K	2673	G
20	K	2674	A
20	K	2686	G
20	K	2687	U
20	K	2694	G
20	K	2695	A
20	K	2696	A

Mol	Chain	Res	Type
20	K	2705	G
20	K	2707	U
20	K	2708	U
20	K	2711	G
20	K	2725	A
20	K	2726	G
20	K	2740	U
20	K	2743	A
20	K	2752	G
20	K	2753	G
20	K	2754	G
20	K	2762	G
20	K	2763	U
20	K	2764	A
20	K	2769	U
20	K	2787	A
20	K	2788	U
20	K	2790	U
20	K	2798	A
20	K	2826	U
20	K	2827	G
20	K	2842	G
20	K	2855	G
20	K	2875	С
20	K	3604	A
20	K	3615	G
20	K	3625	G
20	K	3626	G
20	K	3635	A
20	К	3644	U
20	K	3648	A
20	K	3649	A
20	K	3662	A
20	K	3673	С
20	K	3711	A
20	K	3712	A
20	K	3713	U
20	K	3743	G
20	K	3748	A
20	K	3753	G
$\overline{20}$	K	3760	A
$\overline{20}$	K	3764	U

Mol	Chain	Res	Type
20	K	3766	A
20	K	3772	U
20	K	3773	U
20	K	3774	A
20	K	3776	G
20	K	3777	G
20	K	3784	A
20	K	3785	A
20	K	3786	U
20	K	3811	G
20	K	3814	U
20	K	3817	A
20	K	3819	G
20	K	3822	U
20	K	3838	U
20	K	3840	U
20	K	3876	A
20	K	3877	A
20	K	3878	С
20	K	3879	G
20	K	3889	G
20	K	3897	G
20	K	3901	A
20	K	3905	A
20	K	3906	A
20	K	3907	G
20	K	3908	A
20	K	3915	U
20	K	3916	G
20	K	3938	G
20	K	3939	G
20	K	3942	А
20	K	3943	А
20	K	3946	G
20	K	4066	U
20	K	4073	A
20	K	4076	G
20	K	4084	G
20	K	4109	G
20	K	4119	C
20	K	4120	U
20	K	4122	G

Mol	Chain	Res	Type
20	K	4127	А
20	К	4128	A
20	Κ	4148	С
20	К	4161	G
20	Κ	4162	С
20	К	4163	U
20	К	4170	A
20	Κ	4171	С
20	K	4183	G
20	K	4184	G
20	К	4191	G
20	Κ	4201	G
20	К	4203	А
20	K	4225	G
20	K	4229	U
20	K	4233	A
20	К	4251	А
20	K	4254	G
20	К	4265	U
20	К	4266	G
20	K	4268	А
20	K	4271	А
20	К	4273	A
20	K	4280	А
20	Κ	4281	A
20	К	4291	G
20	Κ	4304	A
20	К	4305	G
20	К	4314	С
20	Κ	4318	С
20	К	4319	С
20	Κ	4329	G
20	К	4330	G
20	Κ	4339	A
20	Κ	4349	С
20	K	4355	G
20	Κ	4360	U
20	K	4373	G
20	K	4376	A
20	K	4377	G
20	K	4378	A
20	K	4379	A

Mol	Chain	Res	Type
20	К	4387	С
20	K	4394	A
20	K	4395	U
20	K	4398	С
20	K	4419	U
20	Κ	4420	U
20	K	4422	A
20	K	4440	G
20	K	4443	С
20	K	4448	G
20	K	4449	A
20	K	4464	A
20	K	4475	G
20	K	4500	U
20	K	4512	U
20	K	4513	A
20	K	4519	С
20	K	4522	G
20	K	4524	G
20	K	4548	A
20	K	4549	G
20	K	4550	G
20	K	4560	С
20	K	4567	G
20	K	4570	G
20	K	4573	G
20	K	4574	U
20	K	4584	A
20	K	4585	U
20	Κ	4590	A
20	Κ	4614	G
20	K	4627	U
20	K	4636	U
20	Κ	$4\overline{637}$	G
20	K	4656	A
$\overline{20}$	K	4661	G
20	K	4670	C
20	K	4672	A
20	K	$4\overline{687}$	A
20	K	4700	A
20	K	4708	A
$\overline{20}$	K	4709	U

Mol	Chain	Res	Type
20	K	4736	С
20	K	4745	G
20	K	4747	С
20	K	4751	G
20	K	4754	G
20	K	4757	С
20	K	4759	С
20	K	4761	G
20	K	4765	G
20	K	4771	С
20	K	4772	С
20	K	4868	G
20	К	4870	G
20	K	4871	С
20	K	4875	G
20	K	4881	U
20	K	4882	U
20	K	4883	С
20	K	4885	U
20	K	4895	С
20	K	4897	G
20	K	4903	G
20	K	4910	A
20	K	4912	G
20	K	4915	G
20	K	4916	G
20	K	4921	С
20	K	4922	С
20	K	4925	U
20	Κ	4926	C
20	K	4928	С
20	K	4943	A
20	K	4944	С
20	Κ	4947	U
20	K	4948	С
20	K	4949	G
20	K	4950	U
20	K	4951	G
20	Κ	4956	A
20	K	4958	С
20	K	4965	U
20	K	4966	A

Mol	Chain	Res	Type
20	Κ	4967	A
20	Κ	4976	U
20	Κ	4985	U
20	К	4988	U
20	Κ	4990	С
20	Κ	4993	G
20	Κ	5014	A
20	Κ	5017	G
20	Κ	5041	G
20	Κ	5047	С
20	K	5050	С
20	Κ	5054	С
20	Κ	5055	G
20	Κ	5061	A
20	Κ	5062	G
20	Κ	5069	U
52	q	8	U
52	q	9	A
52	q	20	U
52	q	20(A)	U
52	q	21	A
52	q	58	A
52	q	75	С
52	q	76	A
54	u	7	G
54	u	22	A
54	u	53	U
54	u	54	A
54	u	64	G
54	u	100	A
54	u	110	G
54	u	120	U
55	V	2	G
55	V	3	A
55	V	21	С
55	V	34	U
55	V	35	С
55	V	38	U
55	V	52	A
55	V	59	A
55	V	62	A
55			1 1

Mol	Chain	Res	Type
55	V	81	С
55	V	82	А
55	V	84	А
55	V	85	U
55	V	86	U
55	V	103	А
55	V	105	С
55	V	106	G
55	V	109	С
55	V	110	U
55	V	111	U
55	V	114	G
55	V	124	U
55	V	125	С
55	V	126	С
55	V	153	С

All (55) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
20	Κ	12	А
20	Κ	125	С
20	Κ	245	С
20	Κ	265	С
20	Κ	275	С
20	Κ	406	С
20	Κ	480	С
20	Κ	481(A)	С
20	Κ	485	С
20	Κ	504	G
20	Κ	696	С
20	Κ	922(B)	С
20	Κ	959	G
20	Κ	964	А
20	К	968	С
20	Κ	1072	С
20	Κ	1174	G
20	К	1197	С
20	К	1211	G
20	К	1236	С
20	К	1370	G
20	Κ	1440	U

Mol	Chain	Res	Type
20	Κ	1445	U
20	Κ	1455	G
20	Κ	1477	С
20	Κ	1590	С
20	Κ	1633	G
20	Κ	1764	G
20	Κ	1990	A
20	Κ	1992	U
20	Κ	2046	G
20	Κ	2089	G
20	Κ	2103	A
20	К	2104	A
20	Κ	2258	С
20	Κ	2266	С
20	Κ	2489	C
20	Κ	2502	A
20	Κ	2543	A
20	Κ	2639	U
20	Κ	2695	A
20	Κ	3603	G
20	Κ	3625	G
20	Κ	3765	G
20	Κ	3876	A
20	Κ	3888	G
20	Κ	3904	G
20	Κ	4119	С
20	Κ	4170	A
20	K	4232	U
20	K	4354	U
20	Κ	4448	G
20	Κ	4699	U
20	Κ	4884	G
20	Κ	4947	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 223 ligands modelled in this entry, 223 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
20	Κ	23
52	q	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Κ	2113:G	O3'	2258:C	Р	41.92
1	Κ	1252:C	O3'	1271:G	Р	35.44
1	Κ	1219:G	O3'	1233:G	Р	24.79
1	Κ	4138:C	O3'	4146:G	Р	17.60
1	Κ	990:C	O3'	1064:G	Р	17.52
1	Κ	4101:C	O3'	4107:G	Р	17.26
1	Κ	4777:C	O3'	4859:C	Р	16.79
1	Κ	3948:C	O3'	4065:G	Р	16.70
1	Κ	1406(C):G	O3'	1411:C	Р	15.26
1	Κ	760:G	O3'	904:C	Р	14.87
1	Κ	1364:U	O3'	1368:A	Р	14.56
1	Κ	5022:U	O3'	5028:G	Р	14.04
1	Κ	2901:G	O3'	3597:G	Р	13.24
1	K	182:G	O3'	189:G	Р	13.19
1	K	523:C	O3'	638:G	Р	13.14

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Κ	1696:C	O3'	1720:C	Р	11.90
1	Κ	1100:U	O3'	1168:G	Р	9.37
1	Κ	1180:C	O3'	1183:C	Р	9.00
1	Κ	4729:A	O3'	4735:G	Р	8.48
1	q	16:C	O3'	18:G	Р	7.27
1	Κ	512:U	O3'	515:C	Р	6.48
1	Κ	500:G	O3'	504:G	Р	6.38
1	Κ	4740:G	O3'	4743:G	Р	5.38
1	К	4899:G	O3'	4902:C	Р	4.37

Continued from previous page...

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-19198. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 210

Y Index: 210

Z Index: 210

6.2.2 Raw map

X Index: 210

Y Index: 210

Z Index: 210

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 220

Y Index: 195

Z Index: 207

6.3.2 Raw map

X Index: 220

Y Index: 195

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0231. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1884 $\rm nm^3;$ this corresponds to an approximate mass of 1702 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.359 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.359 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.79	-	-
Author-provided FSC curve	2.77	3.18	2.83
Unmasked-calculated*	3.24	5.87	3.35

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.24 differs from the reported value 2.78574 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-19198 and PDB model 8RJD. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0231 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0231).

9.4 Atom inclusion (i)

At the recommended contour level, 89% of all backbone atoms, 91% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0231) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9120	0.5730
1	0.6250	0.3460
2	0.5220	0.2910
3	0.7260	0.4160
4	0.6270	0.5100
5	0.1290	0.1720
6	0.0440	0.1240
7	0.1740	0.1810
8	0.0440	0.1120
9	0.0640	0.1450
А	0.9890	0.6510
В	0.5430	0.3100
С	0.9670	0.6340
D	0.9260	0.6170
E	0.9140	0.5980
F	0.9710	0.6390
G	0.8820	0.5850
Н	0.9410	0.6250
Ι	0.9650	0.6350
J	0.8850	0.5880
K	0.9500	0.5810
L	0.9200	0.6140
М	0.9420	0.6180
N	0.9960	0.6560
0	0.9750	0.6460
P	0.8660	0.6010
Q	0.9830	0.6470
R	0.9670	0.6320
S	0.9840	0.6420
Т	0.9520	0.6240
U	0.8160	0.5280
V	0.9740	0.6390
W	0.9760	0.6410
X	0.9660	0.6290
Y	0.9410	0.6270

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
Z	0.9400	0.6140
a	0.9770	0.6490
b	0.8540	0.5680
с	0.9490	0.6230
d	0.9350	0.6200
е	0.9870	0.6480
f	0.9860	0.6520
g	0.9320	0.6140
h	0.9400	0.6220
i	0.9380	0.6060
j	0.9910	0.6500
k	0.8420	0.5820
1	0.9770	0.6300
m	0.9570	0.6270
n	0.9730	0.6180
0	0.9520	0.6360
р	0.9750	0.6340
q	0.6680	0.4800
r	0.9740	0.6360
u	0.9930	0.6250
V	0.9720	0.6040
W	0.9680	0.6400

