

Jun 17, 2025 – 01:53 AM JST

PDB 1	ID	:	$8 \mathrm{HCR} / \mathrm{pdb} 00008 \mathrm{hcr}$
EMDB 1	ID	:	EMD-34664
Tit	tle	:	Cryo-EM structure of the Mycobacterium tuberculosis cytochrome bcc:aa3
			supercomplex and a novel inhibitor targeting subunit cytochrome cI
Autho	ors	:	Mathiyazakan, V.; Gruber, G.
Deposited of	on	:	2022-11-02
Resolution	on	:	4.50 Å(reported)
Thi	s is	a l	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev118
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4-5-2 with Phenix2.0rc1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.44

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain							
1	А	429	72%	16%	12%					
1	М	429	68%	19%	13%					
2	В	573	68%	23%	9%					
2	Ν	573	69%	23%	9%					
3	С	280	59% 19%		22%					
3	0	280	59% 17%		24%					
4	Е	363	55% 21%		24%					
4	Q	363	55% 23%		22%					
5	F	573	65%	31%	•					

Mol	Chain	Length	Quality of chain		
5	R	573	70%	26%	•
6	G	203	72%	20%	8%
6	S	203	70%	20%	9%
7	Н	139	82%		18%
7	Т	139	82%		18%
8	Ι	79	73%	11%	15%
8	U	79	70%	15%	15%
9	J	155	77%	14%	• 8%
9	V	155	70%	22%	8%

2 Entry composition (i)

There are 13 unique types of molecules in this entry. The entry contains 38845 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Cytochrome bc1 complex Rieske iron-sulfur subunit.

Mol	Chain	Residues		At	AltConf	Trace			
1	А	378	Total	C	N	0	S	0	0
		2912	1884	499	518	11		_	
1	1 M	379	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
L	111	M 372	2882	1869	494	508	11	0	0

• Molecule 2 is a protein called Cytochrome bc1 complex cytochrome b subunit.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	524	Total 4130	C 2729	N 703	O 681	${ m S}$ 17	0	0
2	Ν	524	Total 4118	C 2723	N 701	O 677	S 17	0	0

There are 48 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	550	GLY	-	expression tag	UNP A0A0K2HYC0
В	551	GLY	-	expression tag	UNP A0A0K2HYC0
В	552	GLY	-	expression tag	UNP A0A0K2HYC0
В	553	GLY	-	expression tag	UNP A0A0K2HYC0
В	554	GLU	-	expression tag	UNP A0A0K2HYC0
В	555	ASN	-	expression tag	UNP A0A0K2HYC0
В	556	LEU	-	expression tag	UNP A0A0K2HYC0
В	557	TYR	-	expression tag	UNP A0A0K2HYC0
В	558	PHE	-	expression tag	UNP A0A0K2HYC0
В	559	GLN	-	expression tag	UNP A0A0K2HYC0
В	560	ASP	-	expression tag	UNP A0A0K2HYC0
В	561	TYR	-	expression tag	UNP A0A0K2HYC0
В	562	LYS	-	expression tag	UNP A0A0K2HYC0
В	563	ASP	-	expression tag	UNP A0A0K2HYC0
В	564	ASP	-	expression tag	UNP A0A0K2HYC0
В	565	ASP	-	expression tag	UNP A0A0K2HYC0
В	566	ASP	-	expression tag	UNP A0A0K2HYC0

Chain	Residue	Modelled	Actual	Comment	Reference
В	567	LYS	-	expression tag	UNP A0A0K2HYC0
В	568	HIS	-	expression tag	UNP A0A0K2HYC0
В	569	HIS	-	expression tag	UNP A0A0K2HYC0
В	570	HIS	-	expression tag	UNP A0A0K2HYC0
В	571	HIS	-	expression tag	UNP A0A0K2HYC0
В	572	HIS	-	expression tag	UNP A0A0K2HYC0
В	573	HIS	_	expression tag	UNP A0A0K2HYC0
N	550	GLY	-	expression tag	UNP A0A0K2HYC0
N	551	GLY	-	expression tag	UNP A0A0K2HYC0
N	552	GLY	-	expression tag	UNP A0A0K2HYC0
N	553	GLY	-	expression tag	UNP A0A0K2HYC0
N	554	GLU	-	expression tag	UNP A0A0K2HYC0
N	555	ASN	-	expression tag	UNP A0A0K2HYC0
N	556	LEU	-	expression tag	UNP A0A0K2HYC0
N	557	TYR	-	expression tag	UNP A0A0K2HYC0
N	558	PHE	-	expression tag	UNP A0A0K2HYC0
N	559	GLN	-	expression tag	UNP A0A0K2HYC0
N	560	ASP	-	expression tag	UNP A0A0K2HYC0
N	561	TYR	-	expression tag	UNP A0A0K2HYC0
N	562	LYS	-	expression tag	UNP A0A0K2HYC0
N	563	ASP	-	expression tag	UNP A0A0K2HYC0
N	564	ASP	-	expression tag	UNP A0A0K2HYC0
N	565	ASP	-	expression tag	UNP A0A0K2HYC0
N	566	ASP	-	expression tag	UNP A0A0K2HYC0
N	567	LYS	-	expression tag	UNP A0A0K2HYC0
N	568	HIS	-	expression tag	UNP A0A0K2HYC0
N	569	HIS	-	expression tag	UNP A0A0K2HYC0
N	570	HIS	-	expression tag	UNP A0A0K2HYC0
N	571	HIS	-	expression tag	UNP A0A0K2HYC0
N	572	HIS	-	expression tag	UNP A0A0K2HYC0
N	573	HIS	-	expression tag	UNP A0A0K2HYC0

• Molecule 3 is a protein called Cytochrome bc1 complex cytochrome c subunit.

Mol	Chain	Residues	Atoms					AltConf	Trace
3 C	218	Total	С	Ν	0	S	0	0	
	U	210	1487	930	274	274	9	0	0
3 O	212	Total	С	Ν	0	S	0	0	
	U	213	1458	921	261	268	8		0

• Molecule 4 is a protein called CYTOCHROME AA3 SUBUNIT CtaC.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	Е	276	Total 2204	C 1440	N 365	O 390	S 9	0	0
4	Q	283	Total 2247	C 1465	N 375	O 398	S 9	0	0

• Molecule 5 is a protein called Probable cytochrome c oxidase subunit 1.

Mol	Chain	Residues		At	AltConf	Trace		
5 F	552	Total	С	Ν	Ο	\mathbf{S}	0	0
	002	4358	2926	692	715	25		
5 R	559	Total	С	Ν	0	\mathbf{S}	0	0
	n	552	4358	2926	692	715	25	0

• Molecule 6 is a protein called Probable cytochrome c oxidase subunit 3.

Mol	Chain	Residues	Atoms				AltConf	Trace	
6	С	186	Total	С	Ν	0	S	0	0
0 G	100	1473	987	234	245	7	0	0	
6	q	185	Total	С	Ν	Ο	S	0	0
0	G	100	1467	984	233	243	7	0	0

• Molecule 7 is a protein called Cytochrome c oxidase polypeptide 4.

Mol	Chain	Residues	Atoms				AltConf	Trace	
7	Ц	130	Total	С	Ν	Ο	\mathbf{S}	0	0
ГП	159	1048	699	163	182	4	0	0	
7	Т	130	Total	С	Ν	0	S	0	0
1 1	T	139	1045	698	163	180	4	0	0

• Molecule 8 is a protein called CYTOCHROME AA3 SUBUNIT CtaJ.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
0	Т	67	Total	С	Ν	Ο	S	0	0
0 1	07	511	344	82	84	1	0	0	
0	II	U 67	Total	С	Ν	Ο	S	0	0
0	U		510	344	82	83	1	0	

• Molecule 9 is a protein called DUF5130 domain-containing protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
9	J	143	Total 1019	С 645	N 177	0 195	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

Mol	Chain	Residues	Atoms				AltConf	Trace	
9	V	143	Total 1028	C 649	N 180	0 197	S 2	0	0

• Molecule 10 is FE2/S2 (INORGANIC) CLUSTER (CCD ID: FES) (formula: Fe₂S₂) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
10	Δ	1	Total Fe S	0
10	Л	T	4 2 2	0
10	М	1	Total Fe S	0
10	IVI	1	4 2 2	0

• Molecule 11 is PROTOPORPHYRIN IX CONTAINING FE (CCD ID: HEM) (formula: $C_{34}H_{32}FeN_4O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	oms			AltConf
11	В	1	Total	С	Fe	Ν	Ο	0
11	D	T	42	33	1	4	4	0
11	В	1	Total	С	Fe	Ν	0	0
	D	L	43	34	1	4	4	0
11	N	1	Total	С	Fe	Ν	0	0
	IN	L	42	33	1	4	4	0
11	N	1	Total	С	Fe	Ν	0	0
	I IN		43	34	1	4	4	

• Molecule 12 is HEME C (CCD ID: HEC) (formula: $C_{34}H_{34}FeN_4O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	oms			AltConf
19	С	1	Total	С	Fe	Ν	0	0
	U	1	43	34	1	4	4	0
19	С	1	Total	С	Fe	Ν	0	0
12		1	43	34	1	4	4	0
10	0	1	Total	С	Fe	Ν	0	0
	0	1	43	34	1	4	4	0
10	0	1	Total	С	Fe	Ν	Ο	0
12	0	1	43	34	1	4	4	0

• Molecule 13 is HEME-A (CCD ID: HEA) (formula: C₄₉H₅₆FeN₄O₆) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		At	\mathbf{oms}			AltConf
12	F	1	Total	С	Fe	Ν	Ο	0
10	Г	1	60	49	1	4	6	0
12	F	1	Total	С	Fe	Ν	Ο	0
10	Г	1	60	49	1	4	6	0
12	D	1	Total	С	Fe	Ν	0	0
10	π	1	60	49	1	4	6	0
12	В	1	Total	С	Fe	Ν	0	0
15	п	I	60	49	1	4	6	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Cytochrome bc1 complex Rieske iron-sulfur subunit

L355 R248 F559 E250 N367 V255 L369 L279 A383 V276 A383 V276 A384 A272 A385 L279 A386 L279 A386 L279 A386 L279 A386 L279 A386 C214 A387 L279 A386 C314 A440 L329 L440 L316 A460 L316 A460 L316 A460 L316 A460 L316 A460 L316 A460</t

• Molecule 2: Cytochrome bc1 complex cytochrome b subunit

Chain N:	69%	23% 9%
MET SER PRO LLYS LLV LLV SER PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	150 150 150 155 158 158 158 158 158 158 165 165 165 165 165 165 165 165 165 165	493 1100 1100 1100 1111 1111 1115 1115 111
1125 1126 1128 1136 1136 1136 1136 1136 1148 1148 1148 1165 1165 1165 1165 1166	L1700 L177 A1177 A1177 A1178 A1178 A1178 A1178 A1178 A131 A1318 A1	H231 H236 K239 Q245 G245 G245 T248 R248 R248 R248 R248 R248 R248 V255 V255
M259 K266 1273 1276 V276 Q261 1286 1286 1286 1286 1286 239 239 239 239 239 2395 8292 8298	8301 8301 8304 8304 8304 8304 8304 8305 8304 8315 8316 8315 8315 8315 8315 8315 8315 8315 8315	H329 H330 T331 1332 1333 1333 1333 1333 1333 1333
N367 1369 1369 1369 1361 1369 1369 1366 1386 1386 1386 1386 1386 1386 1386	415 8417 1418 8417 1428 8429 1422 1422 1422 1428 1426 8457 1460 6461 1460 6461 1460 1460 1460 1460	V473 P474 P474 P479 P479 1480 1486 1486 1486 1486 1486 1486 1486 1486
H537 ASP ASP ASP ASP ASP TLE ACT ASP ASP ASP ASU ASU ASU ASU ASU ASU ASU ASU	GLM TYPR LYPR ASP ASP ASP ASP ASP HIS HIS HIS HIS HIS	
• Molecule 3: Cytochrome bo	1 complex cytochrome c subur	iit
Chain C: 59	% 19%	22%
MET THR LLEU LLEU GLY PHE THR THR GLY GLY GLY GLY ARG GLY ARG ARG ARG ARG ARG	ARG ARG SER SER SER SER SER SER SER SER SER SER	LEU THR PRO PRO CLN CLN CLN CLN CLU SSB SSB SSB ST2 ST2
G83 890 890 897 8107 110 8107 8108 8110 8111 6110 6110 6111 6118 7118	A134 Y136 V136 V145 S152 S152 S152 S152 C153 C153 F170 F170 C174 N179	F180 G184 G184 D195 L196 L196 R201 C201 C203 C203 C203 C203 C203 C203 C203 C203
q 213 N214 N214 P216 P216 F218 F218 F218 F228 F228 F228 F228 F228	A260 M261 W262 1268 1264 C265 M266 C271 L272 C271 L272 C271 L272 C271 L272 C271 L272 C271 C271 C271 C271 C271 C271 C271 C	
• Molecule 3: Cytochrome bo	1 complex cytochrome c subur	iit
Chain O: 59	% 17%	24%
4ET 1122 1222 1222 1222 1222 1222 1222 12	ARC SER SER SER CLU SER CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	LEU THR PRO PRO GLN VAL AALA ASP ASP SER SER SER SER

P10 P70 V74 V74 V74 V74 V100 V100 P101 P102 P101 P102 P103 P103 P103 P103 P103 P103 P113 P114 P115 P150 P151

Q222 L223 S224 S224 F225 E226 E226 K228 K228 K228 K229 I232 M215 R24: Q24: • Molecule 4: CYTOCHROME AA3 SUBUNIT CtaC Chain E: 55% 21% 24% VAL VAL SER SER SER SER SER SER SER SER SER 3LU VAL VAL PRO PRO PRO PRO SLY SLY ARG SLY ARG SLU ARG ARG 1283 1284 1285 288 289 H281 5282 ARG GLY GLU LEU ALA PRO GLN PRO VAL VAL • Molecule 4: CYTOCHROME AA3 SUBUNIT CtaC Chain Q: 55% 23% 22% MET THR MET THR THR PRODUCT OF THR P ARG ALA MET VAL LYS FRO GLU GLU GLV GLY LYS LYS LYS TYR GLV GLU GLU CLU LEU VAL CLY VAL ARG GLY ARG GLV ARG GLU ARP <mark>Q318</mark> P319 P320 P32 F32 D32 T33 R33 PRO VAL GLY • Molecule 5: Probable cytochrome c oxidase subunit 1 Chain F: 65% 31%

 M90
 M90

 192
 111

 192
 113

 196
 113

 196
 113

 110
 113

 111
 113

 111
 113

 113
 113

 113
 113

 113
 113

 113
 113

 113
 113

 113
 113

 113
 113

 113
 113

 113
 113

 113
 113

 113
 113

 113
 113

 111
 127

 113
 135

 113
 135

 113
 135

 113
 136

 113
 136

 115
 136

 115
 136

 115
 136

 115
 136

 115
 136

 115
 136

 115
 136

 116

T210 W211 L258 F259 W260 F261 F261 F263 G263 H264 P265 F265 F265 F265 V267 V268 1220 L221 1222 A312 H313 W255 Q256 H257 1339 K340 F341 F342 Y400 V401 2336 1337 L402 L517 E518 W519

6561 ARG HIS ASP GLU PRO ALA MET VAL THR SER SER L554

• Molecule 5: Probable cytochrome c oxidase subunit 1

Chain R:	70%	26% •	
MET THR ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	132 133 142 142 154 154 154 155 155 157 157 157 172 172 175 172 175 175	E77 180 181 182 183 184 184 184 184 185 190 198 198 198 198 198	F100 G101 A102 A103
V106 110 1111 1111 1111 1112 1112 1121 1135 1146 1146 1146	1165 1167 1167 1167 1164 8163 8163 8163 6167 6167 1175 1175 1175 1175 1175 1175	M201 1208 1208 1208 7209 1210 1213 1214 1218 1218 1218 1221 1221	F224 L227 A230
1231 124 124 1255 1255 1255 1255 1255 1255	(266 264 264 265 265 2265 2265 1270 1270 1270 2773 2773 2775 2775 2776 2776 2776 2776 2776 2776	K288 K286 1303 1303 1333 1333 1333 1333 1333 133	F342 N343 V344 I345
W349 F365 F365 F365 F365 F366 V365 V365 V366 V365 V365 V365 L379	A380 8331 8332 P382 8333 1334 8339 8339 8339 8339 8339 8339 8339 8	F408 A409 A409 A420 M421 H434 F440 F445 F445 F445 F445 F446	P458 R459 R460 Y461
M4 24 4480 4480 4480 4480 4480 4480 1448 1448	R537 R537 W550 W551 W551 R553 R553 R561 R563 R1C3 R561 R564 R1C3 R561 R1C3 R1C3 R561 R1C3 R561 R1C3 R561 R563 R563 R563 R563 R563 R563 R563 R563		
• Molecule 6: Probab	le cytochrome c oxidase subun	iit 3	
Chain G:	72%	20% 8%	
MET THR SER SER ALA VAL GLT THR THR THR THR THR THR YAR	HIS HIS 119 119 119 124 123 123 123 123 123 123 123 123 123 123	163 167 167 167 768 769 72 782 782 782 782 782 782 783 791	196 199 199 R100
M109 M122 M122 M122 M123 M123 M123 M123 M133 M13	F170 1480 1480 1483 1483 1486 1486 1486 1486 1486 1486 1486 1486		
• Molecule 6: Probab	le cytochrome c oxidase subun	iit 3	
Chain S:	70%	20% 9%	
MET THR SER ALA VALA GLY GLY THR THR THR THR THR THR VALA	HIS Elser N20 N20 N22 N23 N23 N23 N23 N23 N23 N23 N23 N23	A45 F46 W58 W58 P56 P56 P66 F66 E64 E64 E64 C71 A70 V71 V73	T74 L75 V76 L77 178

F97 R101 F113 F113 F113 F113 F113 F113 F113 F	V180 Y184 Y184 1196 1198 Y200 F201 1290 R203	
• Molecule 7: Cytocl	hrome c oxidase polypeptide 4	
Chain H:	82%	18%
M1 E4 A5 A5 A5 A5 R6 E3 R6 B35 B35 C38 C38 C38 C38 C38 C38 C38 C38 C38 C38	M48 L63 L63 80 80 80 80 80 8100 8100 8100 8100 810	1114 8124 H139
• Molecule 7: Cytocl	hrome c oxidase polypeptide 4	
Chain T:	82%	18%
M1 E4 E5 E9 E3 E3 C3 E3 E3 C3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3	L44 647 647 648 151 151 151 848 672 692 892 892 193 893 193 892 892 892 892 892 892 892 892 892 892	A107 P111 1114 F120 F120 H139
• Molecule 8: CYTC	OCHROME AA3 SUBUNIT C	taJ
Chain I:	73%	11% 15%
M1 S2 S2 L1 L1 V20 M50 M50 SER	ALA ALA HIS GLY GLY HIS ALA ALA ALA ALA ALA ALA ALA T70 UT9 V79	
• Molecule 8: CYTC	OCHROME AA3 SUBUNIT C	taJ
Chain U:	70%	15% 15%
M1 M4 L16 L17 L17 N23 S27 S27 L48 L48 L48 L48	T52 SER SER ALA ALA ALA ALA ALA ALA ALA ATA GLY ATA GLY ATA ATA ATA	
• Molecule 9: DUF5	130 domain-containing protein	L
Chain J:	77%	14% · 8%
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	118 120 120 120 121 120 121 155 141 155 141 155 155 155 155 155 15	A78 A79 B80 B81 B82 B83 E83 E83 E83 C104 V114 V114 V114 V114 V114 C115 C104 C104 C104 C104 C104 C104 C104 C104
• Molecule 9: DUF5	130 domain-containing protein	L
Chain V:	70%	22% 8%
MET MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	P18 M20 M20 M20 C30 C30 C30 C30 C30 C30 C30 C30 C30 C3	P72 P75 P76 P76 P76 P80 A81 P83 P83 P83 P83 P89 P89 P89 P89 T100 C103 C103 C103 C104 V106
8112 8113 0113 1144 1144 1144 1147 1147 1147 1147 1		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	TOMOGRAPHY	Depositor
Imposed symmetry	POINT, Not provided	
Number of tilted images used	100	Depositor
Resolution determination method	Not provided	
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum voxel value	1.927	Depositor
Minimum voxel value	-0.639	Depositor
Average voxel value	0.002	Depositor
Voxel value standard deviation	0.034	Depositor
Recommended contour level	Not applicable	
Tomogram size (Å)	530.0, 530.0, 530.0	wwPDB
Tomogram dimensions	500, 500, 500	wwPDB
Tomogram angles (°)	90.0, 90.0, 90.0	wwPDB
Grid spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FES, HEA, HEC, HEM

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond	angles
IVI0I	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.11	0/2989	0.30	0/4056
1	М	0.11	0/2957	0.31	0/4008
2	В	0.12	0/4266	0.33	0/5821
2	Ν	0.12	0/4253	0.33	0/5804
3	С	0.12	0/1516	0.36	0/2061
3	0	0.12	0/1487	0.38	0/2022
4	Е	0.11	0/2266	0.30	0/3090
4	Q	0.12	0/2310	0.32	0/3151
5	F	0.13	0/4517	0.37	0/6171
5	R	0.14	0/4517	0.36	0/6171
6	G	0.12	0/1523	0.35	0/2078
6	S	0.15	0/1517	0.41	0/2070
7	Н	0.09	0/1081	0.27	0/1477
7	Т	0.10	0/1078	0.27	0/1473
8	Ι	0.11	0/530	0.32	0/729
8	U	0.09	0/529	0.30	0/728
9	J	0.10	0/1038	0.30	0/1421
9	V	0.17	0/1047	0.40	0/1432
All	All	0.12	0/39421	0.34	0/53763

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2912	0	2891	54	0
1	М	2882	0	2877	67	0
2	В	4130	0	4148	102	0
2	Ν	4118	0	4137	104	0
3	С	1487	0	1398	51	0
3	0	1458	0	1367	47	0
4	Ε	2204	0	2173	60	0
4	Q	2247	0	2204	57	0
5	F	4358	0	4320	135	0
5	R	4358	0	4321	118	0
6	G	1473	0	1458	30	0
6	S	1467	0	1453	37	0
7	Η	1048	0	1027	18	0
7	Т	1045	0	1025	23	0
8	Ι	511	0	516	10	0
8	U	510	0	513	11	0
9	J	1019	0	1019	19	0
9	V	1028	0	1032	26	0
10	А	4	0	0	0	0
10	М	4	0	0	0	0
11	В	85	0	57	8	0
11	Ν	85	0	57	7	0
12	С	86	0	63	7	0
12	0	86	0	64	16	0
13	F	120	0	107	22	0
13	R	120	0	108	16	0
All	All	38845	0	38335	871	0

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (871) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:O:194:PRO:HD3	12:O:302:HEC:HAD2	1.35	1.06
3:O:215:MET:HE1	12:O:302:HEC:NA	1.89	0.88
4:E:36:PRO:O	4:E:47:ARG:NH2	2.09	0.86
3:O:194:PRO:HG2	12:O:302:HEC:HBA1	1.57	0.85
3:0:174:CYS:SG	12:O:302:HEC:HBB3	2.17	0.84

Atom_1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
3:O:194:PRO:CD	12:O:302:HEC:HAD2	2.06	0.84
1:M:356:LEU:HD12	1:M:375:HIS:CE1	2.20	0.76
4:E:154:LEU:HD21	4:E:297:LYS:HG3	1.67	0.76
11:N:602:HEM:HHC	11:N:602:HEM:HBB2	1.68	0.75
3:O:263:ILE:HG23	3:O:264:ILE:HG12	1.67	0.75
5:F:216:THR:HG21	5:F:273:PRO:HD3	1.69	0.74
4:Q:160:ASP:O	4:Q:163:ARG:NH1	2.20	0.74
1:M:144:GLY:HA3	2:N:279:LEU:HG	1.70	0.73
5:R:363:VAL:HA	5:R:366:MET:HE3	1.70	0.73
4:Q:101:ILE:HG13	4:Q:102:PRO:HD3	1.70	0.72
2:N:301:SER:HB3	3:O:180:PHE:HE1	1.54	0.72
3:C:179:ASN:ND2	3:C:184:GLY:O	2.22	0.72
3:O:179:ASN:ND2	3:O:184:GLY:O	2.22	0.72
3:O:225:PHE:HA	3:O:228:LYS:HE2	1.72	0.72
5:F:363:VAL:HA	5:F:366:MET:HE3	1.71	0.71
3:O:223:LEU:O	3:0:228:LYS:NZ	2.23	0.71
5:F:149:PHE:HB3	5:F:157:LEU:HD22	1.73	0.71
3:C:223:LEU:O	3:C:228:LYS:NZ	2.24	0.71
5:F:80:ASN:HA	5:F:83:PHE:CE1	2.25	0.71
5:R:80:ASN:HA	5:R:83:PHE:CE1	2.26	0.71
1:A:320:MET:HE2	1:A:351:LYS:HG3	1.72	0.71
5:F:377:VAL:HG21	13:F:601:HEA:H251	1.72	0.71
1:A:89:GLU:OE2	1:M:200:ARG:NH2	2.24	0.70
4:Q:159:ALA:HB2	4:Q:200:LYS:HG3	1.73	0.70
3:C:213:GLN:NE2	12:C:301:HEC:O2D	2.24	0.70
9:J:47:ASP:HB3	9:J:140:VAL:HG11	1.73	0.70
6:S:198:VAL:HA	6:S:202:ILE:HD12	1.73	0.70
5:R:149:PHE:HB3	5:R:157:LEU:HD22	1.73	0.70
3:O:215:MET:HE1	12:O:302:HEC:C4A	2.22	0.69
6:S:41:ALA:HB2	7:T:44:LEU:HD13	1.74	0.69
2:B:152:LEU:HD21	2:B:227:LEU:HB3	1.73	0.69
5:F:198:ALA:HB3	5:F:201:MET:HB2	1.73	0.69
5:F:65:GLU:HG2	5:F:74:LEU:HD23	1.73	0.69
4:E:218:GLY:HA2	4:E:262:GLU:HB2	1.74	0.69
5:R:33:THR:HG22	7:T:90:TRP:HB3	1.72	0.69
5:R:395:VAL:HA	5:R:398:PHE:CE1	2.28	0.68
5:R:198:ALA:HB3	5:R:201:MET:HB2	1.74	0.68
4:Q:145:GLN:HG2	4:Q:146:ARG:HG3	1.74	0.68
4:E:142:PHE:HB2	4:E:203:THR:HB	1.75	0.68
3:C:215:MET:HE3	12:C:302:HEC:C4B	2.21	0.68
4:E:225:MET:HB3	4:E:245:VAL:HG13	1.75	0.68

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:Q:229:ASP:OD2	5:R:162:HIS:NE2	2.27	0.67
1:A:321:LEU:HD11	1:A:346:PHE:HD2	1.58	0.67
7:H:95:VAL:HG22	7:H:124:SER:HB2	1.74	0.67
3:C:225:PHE:HA	3:C:228:LYS:HE2	1.77	0.66
4:Q:86:ARG:HB3	4:Q:88:PHE:HD1	1.60	0.66
4:Q:65:TRP:HH2	5:R:367:VAL:HG13	1.61	0.66
5:F:146:ALA:HA	5:F:167:GLY:HA3	1.78	0.66
5:F:256:GLN:HB3	5:F:315:MET:HE1	1.78	0.66
5:R:256:GLN:HB3	5:R:315:MET:HE1	1.78	0.66
5:F:33:THR:HG22	7:H:90:TRP:HB3	1.78	0.65
5:R:111:ILE:HD11	5:R:210:THR:HG21	1.78	0.65
5:F:440:ILE:HA	5:F:443:HIS:CE1	2.32	0.65
3:C:263:ILE:HG23	3:C:264:ILE:HG12	1.79	0.65
6:S:180:VAL:HA	6:S:183:TYR:CE1	2.32	0.65
4:E:242:LYS:NZ	5:F:389:THR:O	2.30	0.65
3:C:83:GLY:HA3	3:C:90:SER:HA	1.77	0.65
5:F:212:ASN:ND2	5:F:272:LEU:O	2.30	0.65
3:O:101:PHE:HB2	3:O:206:THR:HG23	1.79	0.64
5:F:11:LEU:HD12	8:I:48:LEU:HD22	1.78	0.64
5:F:211:TRP:HA	5:F:214:MET:SD	2.38	0.64
2:N:152:LEU:HD21	2:N:227:LEU:HB3	1.79	0.64
3:O:243:GLN:HG3	3:O:248:LEU:HD13	1.79	0.64
2:B:272:ALA:HB1	3:C:272:LEU:HD13	1.80	0.64
5:R:373:GLY:HA3	13:R:601:HEA:H262	1.79	0.64
6:S:37:LEU:HG	7:T:44:LEU:HD21	1.78	0.64
4:Q:134:THR:HB	4:Q:141:LYS:HB3	1.80	0.64
4:Q:142:PHE:HB2	4:Q:203:THR:HB	1.79	0.64
3:C:97:ALA:HB1	3:C:206:THR:HG23	1.79	0.64
5:R:81:GLN:NE2	5:R:146:ALA:O	2.31	0.63
13:R:602:HEA:HBC1	13:R:602:HEA:HMC3	1.80	0.63
9:V:75:ARG:HG3	9:V:76:ASP:H	1.64	0.63
1:M:400:PRO:HB2	1:M:412:ASN:HB3	1.81	0.63
5:R:55:GLY:HA3	5:R:90:MET:HE2	1.79	0.63
4:E:212:VAL:HB	4:E:309:ASN:HD21	1.63	0.63
3:O:108:MET:SD	3:O:109:PRO:HD2	2.39	0.63
5:F:117:ALA:H	5:F:192:THR:HG22	1.64	0.63
5:R:106:VAL:O	5:R:110:GLN:N	2.29	0.62
1:A:376:GLN:OE1	2:B:318:ARG:NH1	2.32	0.62
8:I:2:SER:HA	8:I:6:ILE:HB	1.80	0.62
6:S:76:VAL:HG13	6:S:109:MET:HG3	1.80	0.62
5:R:405:THR:HG23	5:R:406:ILE:HG12	1.81	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:F:81:GLN:NE2	5:F:146:ALA:O	2.25	0.62
4:Q:232:HIS:O	4:Q:245:VAL:N	2.32	0.62
6:G:180:VAL:HA	6:G:183:TYR:CE1	2.35	0.62
2:N:242:GLN:NE2	2:N:252:ASN:O	2.33	0.62
1:A:417:GLU:OE2	1:A:417:GLU:N	2.33	0.62
2:N:472:PRO:HB2	2:N:480:ILE:HD12	1.81	0.62
5:F:208:ILE:HG13	5:F:296:LEU:HD23	1.82	0.61
5:F:323:LEU:HD11	5:F:382:PRO:HB3	1.83	0.61
3:O:109:PRO:HG3	12:O:301:HEC:CHC	2.30	0.61
8:U:71:VAL:HG21	9:V:82:ARG:HB2	1.81	0.61
3:C:108:MET:HE3	3:C:109:PRO:HG2	1.83	0.61
5:F:183:ILE:HG13	5:F:224:PHE:HD2	1.65	0.61
5:R:288:LYS:NZ	5:R:349:TRP:O	2.32	0.61
1:A:424:TRP:O	2:B:330:HIS:ND1	2.30	0.61
1:A:355:HIS:CE1	1:A:356:LEU:HG	2.35	0.61
4:Q:137:GLN:HG3	4:Q:138:TRP:CE3	2.36	0.60
5:R:285:PHE:HE2	5:R:356:GLU:HB2	1.66	0.60
6:S:61:PRO:C	6:S:63:THR:H	2.08	0.60
1:M:129:ASP:OD1	1:M:130:PHE:N	2.34	0.60
2:N:83:GLN:HA	2:N:86:ARG:HG3	1.83	0.60
4:Q:218:GLY:HA2	4:Q:262:GLU:HB2	1.83	0.60
4:E:215:LEU:HD12	4:E:216:PRO:HD2	1.82	0.60
5:R:62:MET:HE2	5:R:82:LEU:HG	1.83	0.60
5:R:230:ALA:HA	6:S:46:PHE:HZ	1.66	0.60
3:O:212:PRO:HD2	3:O:215:MET:HG2	1.84	0.60
5:F:285:PHE:HE2	5:F:356:GLU:HB2	1.67	0.60
5:R:216:THR:O	5:R:220:ILE:HG12	2.02	0.59
9:V:147:ILE:HD12	9:V:150:LEU:HD21	1.84	0.59
6:G:76:VAL:HG13	6:G:109:MET:HG3	1.83	0.59
6:S:122:ARG:HH21	6:S:126:SER:HB3	1.66	0.59
1:A:158:GLN:HG2	1:A:162:ILE:HD12	1.83	0.59
5:R:173:MET:HG3	7:T:107:ALA:HB2	1.83	0.59
11:N:601:HEM:HMB1	11:N:601:HEM:HBB2	1.85	0.59
2:B:292:LEU:HG	3:C:180:PHE:HD2	1.68	0.59
4:E:86:ARG:HH22	5:F:560:VAL:HG11	1.68	0.59
5:F:509:ASP:HB2	5:F:519:TRP:HB3	1.84	0.59
5:R:95:ALA:HB1	5:R:270:ILE:HG21	1.83	0.59
7:T:95:VAL:HG22	7:T:124:SER:HB2	1.85	0.59
6:G:198:VAL:HA	6:G:202:ILE:HD12	1.85	0.59
4:Q:289:ARG:NH2	4:Q:318:GLN:OE1	2.34	0.59
1:A:400:PRO:HB2	1:A:412:ASN:HB3	1.85	0.58

Atom-1	Atom-2	Interatomic	Clash
		distance (Å)	overlap (Å)
13:F:601:HEA:HMC3	13:F:601:HEA:HBC1	1.85	0.58
9:J:65:ARG:HH22	9:J:90:THR:H	1.49	0.58
5:R:100:PHE:HE2	5:R:182:THR:HA	1.68	0.58
7:T:35:GLU:OE1	7:T:38:GLY:N	2.31	0.58
2:B:213:TYR:O	2:B:217:ILE:HG12	2.02	0.58
2:N:305:GLN:HA	2:N:311:MET:HE1	1.85	0.58
5:R:402:LEU:HD13	13:R:601:HEA:HBC2	1.85	0.58
5:R:445:THR:HB	5:R:480:GLY:HA3	1.85	0.58
1:A:120:GLU:N	1:A:120:GLU:OE1	2.36	0.58
2:B:440:ARG:HH12	5:R:23:PRO:HG2	1.68	0.58
5:F:516:SER:OG	5:F:518:GLU:OE1	2.19	0.58
5:R:42:ILE:HD11	5:R:421:MET:HG2	1.85	0.58
4:E:232:HIS:O	4:E:245:VAL:N	2.32	0.58
5:F:278:VAL:HA	5:F:281:ILE:HG22	1.84	0.58
1:M:158:GLN:HG2	1:M:162:ILE:HD12	1.85	0.58
3:O:214:ASN:O	12:O:302:HEC:HBC3	2.02	0.58
3:C:72:SER:HB3	12:C:301:HEC:HBB1	1.85	0.58
2:N:318:ARG:NH1	2:N:396:ALA:O	2.37	0.58
11:B:601:HEM:HMB1	11:B:601:HEM:HBB2	1.84	0.58
2:N:135:THR:HB	2:N:369:LEU:HD13	1.86	0.58
2:B:32:ARG:NH2	1:M:180:ASP:OD1	2.35	0.58
5:R:70:GLY:O	5:R:72:GLN:NE2	2.37	0.57
4:Q:329:ASP:OD2	4:Q:331:ARG:HG2	2.04	0.57
7:H:35:GLU:OE1	7:H:38:GLY:N	2.29	0.57
6:S:44:PHE:HE2	6:S:198:VAL:HG21	1.69	0.57
5:F:70:GLY:O	5:F:72:GLN:NE2	2.37	0.57
8:U:75:ALA:HB3	9:V:108:VAL:H	1.69	0.57
5:F:164:PRO:HG2	3:O:118:PRO:HD2	1.87	0.57
8:U:52:THR:HA	9:V:65:ARG:HH21	1.69	0.57
4:E:78:LYS:HD2	5:F:352:GLN:HB3	1.87	0.57
5:F:227:LEU:HD22	5:F:262:PHE:CZ	2.39	0.57
4:Q:113:THR:HG21	5:R:382:PRO:HD2	1.86	0.57
5:R:278:VAL:HA	5:R:281:ILE:HG22	1.87	0.57
5:R:355:PHE:HA	5:R:359:MET:SD	2.45	0.57
2:B:116:TRP:CD1	2:B:281:GLY:HA2	2.40	0.57
3:C:208:MET:HE1	3:C:228:LYS:HD2	1.86	0.57
4:E:113:THR:HG21	5:F:382:PRO:HD2	1.86	0.57
3:O:211:GLY:HA3	3:O:217:LYS:HB3	1.86	0.57
11:N:602:HEM:HBC2	11:N:602:HEM:HMC2	1.87	0.56
4:Q:225:MET:HB3	4:Q:245:VAL:HG13	1.87	0.56
5:R:270:ILE:HG22	5:R:406:ILE:HD11	1.87	0.56

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:F:341:PHE:HD2	13:F:601:HEA:H273	1.70	0.56
1:A:394:ARG:NH2	2:B:324:GLU:OE1	2.38	0.56
2:B:339:ALA:HA	2:B:342:MET:HE2	1.87	0.56
3:C:208:MET:HE1	3:C:223:LEU:HD23	1.86	0.56
3:C:224:SER:C	3:C:228:LYS:HZ1	2.12	0.56
4:E:220:ARG:NH2	4:E:259:GLN:OE1	2.38	0.56
4:E:225:MET:HB2	4:E:256:ASN:HB2	1.88	0.56
8:U:79:TRP:HE1	9:V:106:ILE:HD11	1.69	0.56
2:N:469:PRO:HB3	2:N:479:PRO:HB3	1.88	0.56
5:R:276:GLY:O	5:R:280:GLU:HG2	2.06	0.56
9:V:72:ASP:OD2	9:V:102:ASN:ND2	2.37	0.56
4:E:128:GLU:O	4:E:146:ARG:NH1	2.39	0.56
1:A:426:ARG:HG3	1:A:427:THR:H	1.71	0.56
2:N:319:ILE:HD12	2:N:420:MET:HE2	1.88	0.56
5:R:379:LEU:HD21	13:R:601:HEA:HBA2	1.88	0.55
1:M:94:ARG:O	1:M:98:VAL:HG23	2.06	0.55
5:R:63:ARG:HH21	5:R:446:PHE:HE1	1.55	0.55
5:F:274:PHE:CD1	5:F:409:ALA:HB3	2.41	0.55
2:B:265:LYS:HE3	3:C:276:ILE:HG23	1.89	0.55
5:F:532:GLU:OE2	9:J:27:ARG:NH1	2.40	0.55
3:C:200:ASN:HB3	3:C:203:GLN:OE1	2.06	0.55
5:F:90:MET:HB3	13:F:602:HEA:CAC	2.37	0.55
5:F:445:THR:O	5:F:449:GLN:NE2	2.39	0.55
6:G:91:ALA:HB2	6:G:99:LEU:HD12	1.87	0.55
4:Q:272:HIS:ND1	4:Q:285:ASN:OD1	2.34	0.55
6:S:58:TRP:CG	6:S:59:PRO:HD3	2.42	0.55
5:F:379:LEU:HD21	13:F:601:HEA:HBA2	1.87	0.55
6:G:58:TRP:CG	6:G:59:PRO:HD3	2.41	0.55
3:O:260:ALA:HA	3:O:263:ILE:HG22	1.89	0.55
2:N:419:GLY:HA2	2:N:423:LEU:HD23	1.88	0.55
4:Q:154:LEU:HD21	4:Q:297:LYS:HB2	1.89	0.55
2:B:62:GLY:C	11:B:602:HEM:HAC	2.32	0.55
6:G:63:THR:HG21	6:G:136:TYR:HE2	1.72	0.55
1:M:70:ASP:OD1	2:N:32:ARG:NH1	2.40	0.55
2:B:65:LEU:HB3	11:B:602:HEM:HMD1	1.89	0.55
2:B:170:LEU:HD23	2:B:295:TYR:HA	1.89	0.55
1:A:144:GLY:HA3	2:B:279:LEU:HG	1.89	0.54
1:A:356:LEU:HD22	2:B:182:SER:HB2	1.89	0.54
5:F:173:MET:HG3	7:H:107:ALA:HB2	1.89	0.54
5:F:337:THR:HG21	13:F:601:HEA:H263	1.90	0.54
5:F:90:MET:HB3	13:F:602:HEA:CBC	2.37	0.54

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:Q:103:PHE:HA	4:Q:106:ILE:HG12	1.90	0.54
2:N:72:SER:HB3	2:N:92:ARG:HB3	1.89	0.54
2:N:142:ARG:NH2	2:N:239:LYS:O	2.39	0.54
3:O:99:VAL:HG21	3:O:136:VAL:HG21	1.90	0.54
5:R:330:THR:O	5:R:333:ILE:HG22	2.08	0.54
6:S:199:ILE:HG23	6:S:200:TYR:CD2	2.43	0.54
1:M:351:LYS:NZ	2:N:298:SER:O	2.41	0.54
12:O:302:HEC:CBC	12:O:302:HEC:HHD	2.38	0.54
9:J:17:PRO:HD2	9:J:20:TRP:HB2	1.88	0.54
6:S:61:PRO:N	6:S:62:PRO:HD2	2.23	0.54
5:F:155:THR:HG22	5:F:255:TRP:HB3	1.89	0.54
7:H:1:MET:HE1	7:H:5:ALA:HB2	1.90	0.53
1:M:170:GLU:HG3	1:M:172:HIS:CE1	2.43	0.53
2:N:213:TYR:O	2:N:217:ILE:HG12	2.09	0.53
5:F:155:THR:HG21	5:F:252:VAL:HA	1.91	0.53
2:N:501:SER:O	2:N:520:ARG:NH2	2.31	0.53
3:O:148:ASN:N	3:0:152:SER:O	2.35	0.53
2:B:73:MET:HE3	2:B:209:ILE:HG21	1.91	0.53
1:M:51:GLU:HG2	1:M:53:ALA:H	1.72	0.53
1:M:424:TRP:O	2:N:330:HIS:ND1	2.31	0.53
2:B:187:MET:HB3	2:B:191:GLY:HA2	1.89	0.53
2:N:94:TYR:OH	2:N:289:ILE:O	2.24	0.53
5:R:109:LEU:HB3	5:R:518:GLU:OE1	2.08	0.53
2:B:286:ILE:HG13	3:C:257:GLU:CD	2.34	0.53
5:F:42:ILE:HD11	5:F:421:MET:HG2	1.89	0.53
5:R:155:THR:HG21	5:R:252:VAL:HA	1.89	0.53
6:S:41:ALA:HB2	7:T:44:LEU:HD22	1.91	0.53
5:F:373:GLY:HA2	13:F:601:HEA:H132	1.91	0.53
3:O:226:GLU:HA	3:O:229:LYS:HG2	1.90	0.53
9:V:19:GLY:O	9:V:30:GLY:HA2	2.08	0.53
8:I:2:SER:H	8:I:6:ILE:HD13	1.73	0.53
2:B:165:SER:HA	2:B:172:SER:HB2	1.91	0.52
5:F:29:TYR:O	5:F:33:THR:OG1	2.16	0.52
6:S:22:PRO:HD3	7:T:66:ARG:HD3	1.90	0.52
1:M:423:PHE:HE2	1:M:425:GLU:HB2	1.73	0.52
2:N:50:ILE:HD11	2:N:273:ILE:HD13	1.91	0.52
5:R:135:ILE:HD11	7:T:100:SER:HB2	1.91	0.52
3:C:99:VAL:HG21	3:C:136:VAL:HG11	1.91	0.52
1:M:376:GLN:HG2	2:N:409:LEU:HD21	1.92	0.52
13:R:602:HEA:HBA1	13:R:602:HEA:HHA	1.91	0.52
5:F:379:LEU:HG	13:F:601:HEA:HMA	1.92	0.52

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
9:J:65:ARG:NH2	9:J:90:THR:OG1	2.43	0.52
1:A:200:ARG:NH2	1:M:89:GLU:OE2	2.43	0.52
5:F:27:LEU:O	5:F:31:LEU:N	2.40	0.52
5:F:336:PRO:O	5:F:340:LYS:HG2	2.10	0.52
6:G:58:TRP:CD1	6:G:59:PRO:HD3	2.45	0.52
2:B:280:MET:HE1	3:C:261:MET:HE1	1.91	0.52
5:F:401:VAL:O	5:F:405:THR:HG22	2.09	0.52
6:G:85:GLN:HA	6:G:88:VAL:HG12	1.92	0.52
1:M:423:PHE:CE2	1:M:425:GLU:HB2	2.45	0.52
2:N:458:LEU:HD22	2:N:462:ALA:HB3	1.92	0.52
5:R:401:VAL:O	5:R:405:THR:HG22	2.09	0.52
2:B:301:SER:HB3	3:C:180:PHE:HE1	1.73	0.52
4:Q:136:PHE:CE1	4:Q:139:ASN:HB3	2.44	0.52
4:Q:213:LEU:HB3	4:Q:288:VAL:HG12	1.91	0.52
5:R:16:PRO:HB3	9:V:48:LEU:HD11	1.90	0.52
2:N:316:LEU:HD23	2:N:338:VAL:HG13	1.92	0.52
4:Q:65:TRP:CH2	5:R:367:VAL:HG13	2.44	0.52
5:R:155:THR:HG22	5:R:255:TRP:HB3	1.91	0.52
4:E:303:ARG:NH2	4:E:309:ASN:OD1	2.43	0.52
2:N:305:GLN:HE21	2:N:318:ARG:HH22	1.58	0.52
3:C:72:SER:O	12:C:301:HEC:HHC	2.09	0.51
2:N:129:LEU:HD13	2:N:153:LEU:HD22	1.92	0.51
4:Q:301:GLN:HA	4:Q:304:ILE:HD12	1.92	0.51
5:R:57:LEU:HB3	13:R:602:HEA:H201	1.92	0.51
5:R:272:LEU:HD21	5:R:303:ILE:HG21	1.91	0.51
5:R:388:VAL:O	5:R:391:SER:OG	2.26	0.51
1:A:90:LYS:O	1:A:93:GLU:HG3	2.09	0.51
2:B:490:PRO:HG3	2:B:496:LEU:HD21	1.92	0.51
5:R:90:MET:HB3	13:R:602:HEA:CAC	2.40	0.51
5:R:420:LYS:HE3	5:R:518:GLU:HG3	1.91	0.51
4:E:134:THR:HB	4:E:141:LYS:HB3	1.92	0.51
4:E:232:HIS:CE1	4:E:284:MET:HE1	2.44	0.51
4:E:276:MET:HE2	4:E:276:MET:HA	1.92	0.51
7:T:111:PRO:HA	7:T:114:ILE:HG12	1.92	0.51
13:F:602:HEA:HBA1	13:F:602:HEA:HHA	1.92	0.51
1:M:362:LEU:HB2	1:M:371:LEU:HB2	1.93	0.51
2:N:305:GLN:NE2	2:N:318:ARG:HH22	2.09	0.51
5:R:336:PRO:HA	5:R:339:ILE:HD12	1.92	0.51
4:E:137:GLN:HG3	4:E:138:TRP:CE3	2.46	0.51
2:N:116:TRP:CD1	2:N:281:GLY:HA2	2.45	0.51
2:N:187:MET:HB3	2:N:191:GLY:H	1.76	0.51

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:R:434:HIS:CD2	5:R:491:PHE:HB2	2.46	0.51
6:S:29:THR:HG21	6:S:180:VAL:HB	1.91	0.51
5:F:107:LEU:HB3	5:F:108:PRO:HD3	1.93	0.51
13:F:602:HEA:HBC1	13:F:602:HEA:HMC3	1.92	0.51
5:F:484:LEU:HD23	13:F:602:HEA:H11	1.92	0.51
7:T:47:GLY:O	7:T:51:ILE:HG23	2.11	0.51
2:B:318:ARG:HD2	2:B:396:ALA:HA	1.93	0.51
1:M:273:PHE:HB2	1:M:292:TRP:HZ3	1.76	0.51
5:R:459:ARG:NH2	13:R:602:HEA:HAD2	2.25	0.51
6:S:21:ARG:HB3	7:T:63:LEU:HD11	1.93	0.51
5:F:523:CYS:HB3	5:F:524:PRO:HD3	1.93	0.51
1:M:120:GLU:N	1:M:120:GLU:OE1	2.44	0.51
2:N:315:GLY:HA2	2:N:396:ALA:HB2	1.93	0.50
1:A:129:ASP:OD1	1:A:130:PHE:N	2.39	0.50
2:B:135:THR:HB	2:B:369:LEU:HD13	1.92	0.50
9:J:41:TYR:HB3	9:J:43:PHE:HD1	1.77	0.50
1:M:90:LYS:O	1:M:93:GLU:HG3	2.11	0.50
1:M:292:TRP:HE1	1:M:294:GLU:HG3	1.76	0.50
5:R:458:PRO:HG2	5:R:461:TYR:CZ	2.47	0.50
9:V:80:ARG:O	9:V:84:ILE:HG12	2.10	0.50
2:N:73:MET:HE3	2:N:73:MET:HA	1.94	0.50
4:Q:68:ILE:O	4:Q:71:SER:OG	2.25	0.50
1:A:63:LEU:HD21	1:A:74:ILE:HD12	1.93	0.50
4:E:213:LEU:HB3	4:E:288:VAL:HG12	1.93	0.50
1:M:152:ILE:HA	1:M:155:VAL:HG12	1.92	0.50
5:R:208:ILE:HG13	5:R:296:LEU:HD23	1.92	0.50
5:R:379:LEU:HG	13:R:601:HEA:HMA	1.93	0.50
5:F:264:HIS:CE1	5:F:313:HIS:HE2	2.29	0.50
5:F:355:PHE:HA	5:F:359:MET:SD	2.51	0.50
4:Q:313:LEU:HD22	4:Q:320:PRO:HA	1.94	0.50
4:E:235:TRP:HZ3	5:F:458:PRO:HD3	1.75	0.50
5:F:63:ARG:NH2	5:F:66:LEU:HD23	2.26	0.50
1:M:356:LEU:HD22	2:N:182:SER:HB2	1.93	0.50
3:O:108:MET:HG2	3:O:123:ILE:HD12	1.94	0.50
5:R:81:GLN:O	5:R:85:MET:HG2	2.11	0.50
1:A:94:ARG:O	1:A:98:VAL:HG23	2.11	0.50
1:A:281:MET:HB2	1:A:323:ARG:HH11	1.77	0.50
1:A:351:LYS:NZ	2:B:298:SER:O	2.44	0.50
2:N:35:LEU:HB3	2:N:259:MET:HE2	1.94	0.50
5:R:172:ILE:HG23	5:R:231:LEU:HG	1.94	0.50
1:M:307:LYS:O	1:M:311:ILE:HG12	2.12	0.49

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:F:395:VAL:HA	5:F:398:PHE:CE1	2.47	0.49
5:F:402:LEU:O	5:F:406:ILE:HG22	2.12	0.49
1:M:323:ARG:HE	1:M:345:GLU:HG3	1.76	0.49
4:Q:138:TRP:CD1	4:Q:280:TYR:HB2	2.47	0.49
5:R:67:ALA:HA	5:R:474:ASN:HD22	1.77	0.49
5:R:172:ILE:HG22	5:R:173:MET:HE2	1.94	0.49
4:E:232:HIS:HE1	4:E:284:MET:HE1	1.77	0.49
4:E:268:ALA:HB2	4:E:289:ARG:HE	1.77	0.49
5:F:34:THR:OG1	5:F:36:ASP:OD1	2.20	0.49
2:B:129:LEU:HD13	2:B:153:LEU:HD22	1.92	0.49
2:B:316:LEU:HG	2:B:338:VAL:HG22	1.92	0.49
5:R:552:GLU:CD	5:R:552:GLU:H	2.19	0.49
3:C:108:MET:SD	3:C:109:PRO:HD2	2.52	0.49
4:E:65:TRP:HE1	5:F:370:LEU:HD22	1.76	0.49
1:M:96:VAL:HG21	1:M:157:TYR:HB2	1.93	0.49
5:F:147:ALA:HB2	5:F:168:GLY:HA2	1.94	0.49
1:M:394:ARG:NH2	2:N:324:GLU:OE1	2.45	0.49
2:N:80:GLY:O	2:N:86:ARG:NH1	2.43	0.49
4:E:225:MET:N	4:E:225:MET:HE2	2.27	0.49
2:N:411:ALA:O	2:N:415:ILE:HG13	2.13	0.49
6:S:73:VAL:HB	6:S:113:PHE:HD1	1.78	0.49
2:B:383:ALA:HA	2:B:386:ILE:HG22	1.95	0.49
2:N:303:GLY:HA3	3:O:180:PHE:CZ	2.48	0.49
13:R:601:HEA:HMC3	13:R:601:HEA:HBC1	1.95	0.49
5:R:459:ARG:HH21	13:R:602:HEA:HAD2	1.78	0.49
4:E:128:GLU:H	4:E:220:ARG:HB2	1.78	0.48
4:E:277:CYS:SG	4:E:281:HIS:ND1	2.86	0.48
6:G:122:ARG:HH21	6:G:126:SER:HA	1.78	0.48
1:M:355:HIS:ND1	1:M:356:LEU:HG	2.28	0.48
4:Q:157:ASP:OD1	4:Q:157:ASP:N	2.45	0.48
5:R:62:MET:HE1	5:R:83:PHE:HB3	1.95	0.48
5:R:121:LEU:HD12	5:R:184:LEU:HD12	1.94	0.48
1:A:96:VAL:HG21	1:A:157:TYR:HB2	1.95	0.48
2:B:458:LEU:HD22	2:B:462:ALA:HB3	1.95	0.48
5:R:381:SER:HB3	5:R:384:LEU:HB2	1.95	0.48
7:T:6:ARG:O	7:T:9:GLU:HG3	2.13	0.48
4:E:84:LEU:O	5:F:553:ARG:NH2	2.44	0.48
4:E:236:VAL:HG12	4:E:239:PHE:H	1.78	0.48
2:N:474:ASP:OD1	2:N:478:HIS:N	2.46	0.48
5:R:460:ARG:HH21	13:R:602:HEA:CGD	2.25	0.48
7:H:91:TRP:O	7:H:95:VAL:HG23	2.13	0.48

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:Q:299:TYR:OH	4:Q:309:ASN:OD1	2.31	0.48
8:I:70:THR:OG1	9:J:112:SER:HB3	2.13	0.48
2:N:286:ILE:HG13	3:O:257:GLU:CD	2.38	0.48
2:N:383:ALA:HA	2:N:386:ILE:HG22	1.94	0.48
5:R:284:VAL:HG13	5:R:285:PHE:HD1	1.77	0.48
1:A:164:GLU:N	1:A:164:GLU:OE1	2.46	0.48
3:C:215:MET:HE1	12:C:302:HEC:C1B	2.42	0.48
5:F:56:GLY:HA3	13:F:602:HEA:H161	1.95	0.48
5:R:265:PRO:O	5:R:269:ILE:HG12	2.14	0.48
5:F:373:GLY:C	13:F:601:HEA:H162	2.38	0.48
9:J:57:TYR:HD1	9:J:60:ARG:HH21	1.61	0.48
1:A:228:LYS:HE3	2:B:200:GLY:HA2	1.96	0.48
2:B:218:LEU:HD21	11:N:602:HEM:HBC1	1.95	0.48
3:O:108:MET:CG	3:O:109:PRO:HD2	2.44	0.48
4:Q:277:CYS:SG	4:Q:281:HIS:ND1	2.85	0.48
5:R:537:ARG:HH22	7:T:72:GLY:HA2	1.79	0.48
3:C:170:PHE:HA	3:C:174:CYS:SG	2.54	0.48
4:E:38:GLY:N	4:E:47:ARG:HH22	2.10	0.48
5:F:285:PHE:CE2	5:F:356:GLU:HB2	2.49	0.48
5:F:445:THR:HB	5:F:480:GLY:HA3	1.96	0.48
1:A:224:GLY:HA3	1:M:114:PHE:HZ	1.79	0.48
1:A:236:PRO:HA	1:A:241:LYS:HG2	1.94	0.48
2:N:119:LEU:HD22	2:N:308:PHE:HE1	1.79	0.48
2:N:170:LEU:HA	2:N:295:TYR:HD1	1.78	0.48
12:O:301:HEC:HHC	12:O:301:HEC:HBB3	1.96	0.48
5:F:135:ILE:HD11	7:H:100:SER:HB2	1.95	0.47
2:N:137:ALA:HB2	2:N:369:LEU:HD21	1.95	0.47
2:N:216:HIS:HE1	11:N:602:HEM:NB	2.12	0.47
2:B:384:MET:SD	2:B:424:PRO:HB3	2.54	0.47
3:C:152:SER:OG	3:C:153:ILE:N	2.46	0.47
5:F:111:ILE:HG13	5:F:197:ARG:HG3	1.96	0.47
5:F:439:PHE:O	5:F:443:HIS:ND1	2.47	0.47
5:F:458:PRO:HG2	5:F:461:TYR:CZ	2.48	0.47
2:N:458:LEU:O	2:N:460:HIS:N	2.47	0.47
9:V:112:SER:HA	9:V:115:ARG:CZ	2.44	0.47
1:A:282:ASP:HB3	3:C:217:LYS:HD2	1.96	0.47
6:G:169:LYS:N	2:N:500:GLY:O	2.47	0.47
9:J:80:ARG:HH22	9:J:84:ILE:HD11	1.79	0.47
2:N:384:MET:SD	2:N:424:PRO:HB3	2.54	0.47
2:B:206:THR:HB	2:N:92:ARG:HH21	1.78	0.47
2:B:349:LEU:HB3	2:B:350:PRO:HD3	1.96	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:E:60:VAL:O	4:E:64:VAL:HG23	2.15	0.47
5:R:95:ALA:O	5:R:98:ILE:HG22	2.15	0.47
7:T:91:TRP:O	7:T:95:VAL:HG23	2.14	0.47
2:B:159:GLU:HG3	11:B:602:HEM:HMB3	1.96	0.47
2:B:245:GLY:HA3	2:B:248:ARG:HD3	1.96	0.47
5:F:172:ILE:HG22	5:F:173:MET:HE2	1.96	0.47
7:H:6:ARG:NE	7:H:9:GLU:OE2	2.47	0.47
2:N:178:ALA:O	2:N:182:SER:OG	2.27	0.47
4:E:301:GLN:HA	4:E:304:ILE:HD12	1.97	0.47
2:N:328:TRP:H	2:N:328:TRP:CD1	2.32	0.47
7:T:4:GLU:OE1	7:T:4:GLU:N	2.46	0.47
1:A:196:THR:HB	1:A:199:ARG:HE	1.78	0.47
2:B:83:GLN:HA	2:B:86:ARG:HG3	1.97	0.47
2:B:397:MET:SD	2:B:401:ILE:HG13	2.54	0.47
2:B:447:GLU:OE1	2:B:448:HIS:NE2	2.47	0.47
3:C:109:PRO:HG3	12:C:301:HEC:C1C	2.44	0.47
5:F:13:ALA:HB1	8:I:50:ALA:HB2	1.96	0.47
5:F:258:LEU:HD22	6:G:46:PHE:HE1	1.79	0.47
7:H:90:TRP:O	7:H:93:ILE:HG22	2.14	0.47
3:O:226:GLU:OE2	3:O:226:GLU:N	2.37	0.47
4:E:272:HIS:ND1	4:E:285:ASN:OD1	2.42	0.47
8:I:17:LEU:HA	8:I:20:VAL:HG22	1.96	0.47
5:R:263:GLY:O	5:R:266:GLU:HB2	2.15	0.47
3:C:226:GLU:OE1	3:C:226:GLU:N	2.36	0.47
5:F:172:ILE:HG23	5:F:231:LEU:HG	1.97	0.47
6:G:131:ILE:O	6:G:138:SER:OG	2.30	0.47
1:M:296:ASP:OD1	1:M:297:GLY:N	2.47	0.47
2:N:245:GLY:HA3	2:N:248:ARG:HD3	1.97	0.47
3:O:219:SER:O	3:O:222:GLN:NE2	2.48	0.47
5:R:440:ILE:HA	5:R:443:HIS:NE2	2.30	0.47
5:R:523:CYS:HB2	5:R:524:PRO:HD3	1.97	0.47
5:F:397:HIS:O	5:F:401:VAL:HG22	2.14	0.46
2:N:418:ILE:O	2:N:422:ILE:HG12	2.14	0.46
1:A:169:GLN:HB3	2:B:253:VAL:HB	1.96	0.46
4:E:138:TRP:CD1	4:E:280:TYR:HB2	2.50	0.46
1:M:333:VAL:HG21	1:M:383:HIS:ND1	2.29	0.46
5:R:220:ILE:HG23	5:R:224:PHE:CD2	2.51	0.46
5:R:269:ILE:HG13	5:R:270:ILE:HG12	1.96	0.46
6:S:76:VAL:HG22	6:S:109:MET:HE3	1.97	0.46
8:I:79:TRP:CG	9:J:104:CYS:HB3	2.50	0.46
1:M:355:HIS:CE1	1:M:356:LEU:HG	2.50	0.46

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:N:35:LEU:HB3	2:N:259:MET:CE	2.45	0.46
4:Q:97:VAL:O	4:Q:101:ILE:HG12	2.15	0.46
5:R:403:PHE:CE2	5:R:407:VAL:HG21	2.50	0.46
9:V:144:ILE:HG22	9:V:148:ARG:HE	1.80	0.46
2:B:316:LEU:HD23	2:B:338:VAL:HG13	1.97	0.46
2:B:465:GLU:HB3	2:B:467:HIS:CD2	2.50	0.46
3:C:156:GLN:HE22	3:C:159:ARG:HH21	1.64	0.46
2:N:421:VAL:HG13	2:N:422:ILE:HG23	1.98	0.46
2:B:328:TRP:H	2:B:328:TRP:CD1	2.33	0.46
2:N:177:ARG:O	2:N:181:SER:HB3	2.16	0.46
9:V:17:PRO:O	9:V:18:PRO:C	2.58	0.46
1:A:355:HIS:CE1	1:A:375:HIS:ND1	2.84	0.46
9:J:112:SER:HA	9:J:115:ARG:CZ	2.45	0.46
1:M:141:LEU:HA	2:N:279:LEU:HD23	1.98	0.46
5:R:237:ASP:OD2	5:R:244:ILE:HB	2.16	0.46
1:A:323:ARG:NE	1:A:345:GLU:HG3	2.31	0.46
5:F:111:ILE:HG23	5:F:113:ALA:H	1.80	0.46
5:F:121:LEU:HD12	5:F:184:LEU:HD12	1.96	0.46
5:F:258:LEU:HD12	5:F:259:PHE:N	2.30	0.46
1:M:198:ARG:HA	1:M:198:ARG:HD2	1.83	0.46
1:M:253:ARG:HB2	1:M:257:GLU:OE2	2.16	0.46
1:M:307:LYS:O	1:M:310:GLU:HG3	2.16	0.46
3:O:196:LEU:HA	12:O:302:HEC:O2A	2.16	0.46
5:R:258:LEU:HD12	5:R:259:PHE:N	2.30	0.46
5:F:212:ASN:O	5:F:216:THR:HG23	2.16	0.46
2:B:92:ARG:NH2	2:N:206:THR:HB	2.31	0.45
2:B:120:MET:HG2	2:B:277:LEU:HD21	1.98	0.45
5:F:389:THR:C	5:F:391:SER:H	2.24	0.45
5:F:449:GLN:OE1	5:F:449:GLN:N	2.49	0.45
2:N:177:ARG:HB2	2:N:203:PHE:CZ	2.50	0.45
6:S:58:TRP:CD1	6:S:59:PRO:HD3	2.51	0.45
1:A:93:GLU:HA	1:A:96:VAL:HG12	1.99	0.45
4:E:146:ARG:NH1	4:E:148:ASN:HB2	2.31	0.45
4:E:215:LEU:HD11	4:E:221:ILE:HD12	1.97	0.45
3:O:215:MET:HE1	12:O:302:HEC:CHB	2.46	0.45
5:R:173:MET:SD	7:T:106:ILE:HG23	2.56	0.45
5:F:268:TYR:HD2	5:F:307:SER:HB2	1.82	0.45
5:F:373:GLY:HA3	13:F:601:HEA:H262	1.98	0.45
5:R:274:PHE:HD2	5:R:409:ALA:HB3	1.80	0.45
5:R:445:THR:HG23	5:R:446:PHE:CD1	2.51	0.45
6:S:70:ALA:O	6:S:73:VAL:HG22	2.17	0.45

A + 1	At and 9	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
7:T:90:TRP:O	7:T:93:ILE:HG22	2.16	0.45
1:A:78:GLU:HG3	2:B:529:ARG:HH12	1.81	0.45
2:B:90:MET:HE3	2:B:94:TYR:HD2	1.82	0.45
4:E:122:GLN:HG2	4:E:123:ILE:N	2.32	0.45
6:G:82:PHE:HA	6:G:85:GLN:CD	2.41	0.45
7:H:105:GLY:HA2	7:H:113:LEU:HD23	1.98	0.45
2:N:458:LEU:HD11	2:N:464:ILE:HG12	1.97	0.45
2:B:55:PHE:O	2:B:59:LEU:HD23	2.17	0.45
2:B:72:SER:O	2:B:73:MET:HE2	2.17	0.45
2:B:508:LEU:HD22	6:S:101:ARG:HG2	1.98	0.45
5:F:265:PRO:O	5:F:269:ILE:HG12	2.16	0.45
1:M:321:LEU:HD11	1:M:346:PHE:CD2	2.52	0.45
2:N:398:ASN:OD1	2:N:412:THR:OG1	2.23	0.45
5:R:53:PHE:CE1	5:R:488:MET:HG2	2.52	0.45
5:R:218:ILE:O	5:R:221:LEU:HG	2.17	0.45
1:A:333:VAL:HG21	1:A:383:HIS:ND1	2.31	0.45
2:B:301:SER:HB3	3:C:180:PHE:CE1	2.50	0.45
7:H:112:TRP:H	7:H:112:TRP:CD1	2.34	0.45
1:M:130:PHE:H	3:O:242:ARG:HH21	1.63	0.45
1:M:321:LEU:HD11	1:M:346:PHE:HD2	1.81	0.45
3:0:174:CYS:SG	12:O:302:HEC:CBB	2.98	0.45
1:A:355:HIS:O	1:A:356:LEU:HD23	2.17	0.45
1:A:423:PHE:HD1	1:A:425:GLU:H	1.65	0.45
5:F:195:CYS:SG	6:G:20:ASN:ND2	2.90	0.45
5:F:288:LYS:HB3	5:F:288:LYS:HE2	1.72	0.45
5:F:434:HIS:CD2	5:F:491:PHE:HB2	2.52	0.45
5:R:359:MET:SD	5:R:360:LEU:N	2.90	0.45
1:A:181:ARG:NH1	2:N:22:ASP:OD2	2.39	0.45
2:B:121:PHE:CZ	11:B:601:HEM:HBB1	2.52	0.45
2:B:250:GLU:CD	2:B:367:ASN:H	2.24	0.45
3:C:228:LYS:O	3:C:232:ILE:HG23	2.17	0.45
4:E:139:ASN:OD1	4:E:140:TRP:N	2.46	0.45
2:N:64:TYR:HD2	2:N:65:LEU:HD22	1.80	0.45
6:S:75:LEU:HA	6:S:78:ILE:HG12	1.99	0.45
2:B:116:TRP:CZ2	2:B:286:ILE:HB	2.51	0.45
4:E:76:ARG:O	4:E:78:LYS:N	2.49	0.45
5:F:59:ALA:HB2	5:F:86:HIS:CE1	2.52	0.45
2:N:419:GLY:O	2:N:423:LEU:HB2	2.17	0.45
5:R:303:ILE:HG13	5:R:336:PRO:HB2	1.99	0.45
13:R:602:HEA:H271	13:R:602:HEA:H211	1.40	0.45
1:A:426:ARG:HG3	1:A:427:THR:N	2.32	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:B:75:ASP:OD1	2:B:75:ASP:N	2.50	0.45
3:C:248:LEU:HD23	3:C:248:LEU:H	1.82	0.45
4:E:127:PRO:O	4:E:146:ARG:NH2	2.40	0.45
5:F:381:SER:HB3	5:F:384:LEU:HB2	1.98	0.45
1:M:251:THR:O	1:M:293:ARG:NH2	2.50	0.45
3:O:70:ASP:HA	3:O:74:VAL:HG23	1.99	0.45
3:O:77:HIS:CD2	12:O:301:HEC:NB	2.85	0.45
4:Q:210:ILE:HG13	4:Q:327:PRO:HB3	1.98	0.45
5:R:398:PHE:HA	5:R:401:VAL:HG22	1.99	0.45
2:B:137:ALA:HB2	2:B:369:LEU:HD21	1.99	0.44
4:E:75:HIS:CD2	5:F:350:LYS:H	2.36	0.44
4:E:136:PHE:CZ	4:E:139:ASN:HB3	2.53	0.44
6:G:82:PHE:HD1	6:G:85:GLN:HE22	1.63	0.44
1:M:155:VAL:HG23	2:N:265:LYS:NZ	2.32	0.44
4:Q:142:PHE:CE2	4:Q:213:LEU:HB2	2.52	0.44
5:R:92:LEU:HD13	5:R:175:LEU:HD22	1.99	0.44
1:A:372:CYS:HB3	1:A:377:SER:HB3	1.99	0.44
6:G:21:ARG:HB2	7:H:63:LEU:HD11	1.99	0.44
9:J:55:LEU:HD11	9:J:66:PHE:HB2	1.99	0.44
4:Q:49:LEU:HD22	4:Q:116:VAL:HG21	1.98	0.44
4:Q:128:GLU:H	4:Q:220:ARG:HB3	1.81	0.44
6:S:76:VAL:HG13	6:S:109:MET:HE3	1.98	0.44
3:C:145:VAL:HG13	3:C:202:GLN:HE21	1.82	0.44
5:F:218:ILE:O	5:F:221:LEU:HG	2.17	0.44
5:F:479:ILE:O	5:F:483:ILE:HG12	2.18	0.44
13:F:602:HEA:HHA	13:F:602:HEA:CBA	2.47	0.44
4:Q:235:TRP:HZ3	5:R:458:PRO:HD3	1.83	0.44
5:R:10:GLU:HB3	5:R:11:LEU:H	1.53	0.44
2:B:457:ARG:NH2	5:R:196:MET:HE1	2.32	0.44
4:E:37:GLU:C	4:E:47:ARG:HH22	2.26	0.44
5:F:336:PRO:HA	5:F:339:ILE:HD12	2.00	0.44
1:M:273:PHE:HB2	1:M:292:TRP:CZ3	2.52	0.44
4:Q:294:ASN:HA	4:Q:297:LYS:HG2	1.99	0.44
5:R:118:PHE:HB3	5:R:121:LEU:HD23	1.98	0.44
6:G:69:GLN:C	6:G:72:PRO:HD2	2.42	0.44
1:M:93:GLU:HA	1:M:96:VAL:HG12	2.00	0.44
3:O:261:MET:HE2	3:O:261:MET:HA	1.99	0.44
2:B:58:LEU:HD23	11:B:602:HEM:C3B	2.53	0.44
6:G:60:PRO:HG2	6:G:63:THR:OG1	2.17	0.44
3:0:178:HIS:ND1	3:O:196:LEU:HD21	2.32	0.44
4:E:37:GLU:HA	4:E:47:ARG:HH12	1.83	0.44

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:F:222:ILE:HA	6:G:38:MET:SD	2.58	0.44
5:F:543:PHE:CE2	5:F:554:LEU:HD11	2.53	0.44
6:G:33:LEU:HA	6:G:36:GLU:CD	2.43	0.44
4:E:224:GLN:C	4:E:225:MET:HE2	2.43	0.44
4:E:273:CYS:HB3	4:E:281:HIS:HE1	1.82	0.44
5:F:315:MET:O	5:F:318:THR:OG1	2.34	0.44
6:S:60:PRO:HG2	6:S:63:THR:OG1	2.18	0.44
1:A:93:GLU:HB2	1:M:203:ILE:HD11	1.99	0.43
2:B:492:ARG:HB2	2:B:495:LYS:HG2	2.00	0.43
5:F:41:GLY:HA3	5:F:105:LEU:HD22	2.00	0.43
6:G:96:ILE:HD11	6:G:170:PHE:HB2	1.99	0.43
3:O:178:HIS:HD1	3:O:196:LEU:HD21	1.83	0.43
5:R:212:ASN:ND2	5:R:272:LEU:O	2.47	0.43
2:B:458:LEU:HD11	2:B:464:ILE:HG12	2.00	0.43
4:E:137:GLN:HE21	4:E:138:TRP:CG	2.35	0.43
2:N:316:LEU:HD12	2:N:319:ILE:HD11	2.00	0.43
4:Q:201:VAL:HG11	4:Q:303:ARG:HB3	1.99	0.43
5:R:446:PHE:HA	5:R:449:GLN:OE1	2.17	0.43
5:R:459:ARG:NH2	13:R:602:HEA:O1D	2.50	0.43
3:C:118:PRO:HG2	5:R:164:PRO:HB2	2.01	0.43
5:F:543:PHE:HE2	5:F:554:LEU:HD11	1.83	0.43
1:M:232:LYS:HB2	1:M:232:LYS:HE3	1.74	0.43
2:N:58:LEU:HD11	2:N:117:ALA:C	2.44	0.43
12:O:302:HEC:HBC3	12:O:302:HEC:HHD	1.98	0.43
4:Q:136:PHE:HE2	4:Q:141:LYS:HB2	1.83	0.43
2:B:92:ARG:HH21	2:N:206:THR:HB	1.82	0.43
3:C:208:MET:CE	3:C:228:LYS:HD2	2.48	0.43
5:F:95:ALA:O	5:F:98:ILE:HG22	2.19	0.43
5:F:262:PHE:O	5:F:266:GLU:HG2	2.19	0.43
13:F:602:HEA:H212	13:F:602:HEA:H271	1.69	0.43
9:J:80:ARG:O	9:J:84:ILE:HG12	2.18	0.43
1:M:401:ILE:HD12	1:M:409:LEU:HD12	2.00	0.43
6:S:69:GLN:C	6:S:72:PRO:HD2	2.44	0.43
1:A:214:PHE:CZ	1:M:147:ILE:HD12	2.53	0.43
1:A:263:ARG:NH2	3:C:222:GLN:O	2.51	0.43
2:B:59:LEU:O	2:B:63:VAL:HG23	2.17	0.43
2:B:374:ASP:O	2:B:439:GLN:NE2	2.52	0.43
2:B:397:MET:SD	2:B:400:ILE:HB	2.58	0.43
3:C:201:GLU:HA	3:C:204:ILE:HD12	1.99	0.43
4:E:146:ARG:HH11	4:E:148:ASN:HB2	1.83	0.43
13:F:601:HEA:H261	13:F:601:HEA:H172	1.65	0.43

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:G:67:LEU:HD11	6:G:203:ARG:HH22	1.83	0.43
1:M:341:PHE:CG	1:M:400:PRO:HG3	2.54	0.43
2:N:339:ALA:HA	2:N:342:MET:HG2	2.01	0.43
8:U:23:VAL:O	8:U:27:SER:OG	2.32	0.43
2:B:216:HIS:HE1	11:B:602:HEM:C1B	2.37	0.43
2:B:320:TRP:CD2	2:B:321:PRO:HD2	2.54	0.43
2:B:355:LEU:O	2:B:359:PHE:HB2	2.17	0.43
2:B:458:LEU:O	2:B:460:HIS:N	2.52	0.43
7:H:1:MET:SD	7:H:4:GLU:HB2	2.59	0.43
1:M:113:ILE:O	1:M:117:TRP:HB2	2.17	0.43
2:N:64:TYR:CD2	2:N:110:VAL:HG11	2.54	0.43
5:R:75:SER:OG	5:R:77:GLU:OE1	2.26	0.43
9:V:114:VAL:HG13	9:V:114:VAL:O	2.19	0.43
7:H:80:GLY:H	2:N:457:ARG:HB3	1.83	0.43
9:V:36:GLU:OE1	9:V:36:GLU:N	2.52	0.43
2:B:381:ILE:O	2:B:384:MET:HB3	2.19	0.43
5:F:210:THR:HG22	5:F:214:MET:HE1	2.01	0.43
5:F:220:ILE:HG23	5:F:224:PHE:CE2	2.54	0.43
5:F:437:LEU:HD23	5:F:487:SER:HA	2.01	0.43
9:J:114:VAL:O	9:J:114:VAL:HG13	2.19	0.43
1:M:67:GLY:O	1:M:71:GLY:N	2.51	0.43
5:R:439:PHE:O	5:R:443:HIS:CD2	2.72	0.43
5:R:459:ARG:HG3	5:R:460:ARG:HG3	2.00	0.43
5:R:550:MET:SD	5:R:553:ARG:HD3	2.59	0.43
6:S:33:LEU:HD11	6:S:184:TYR:HD1	1.84	0.43
6:S:63:THR:HG21	6:S:136:TYR:HE2	1.83	0.43
1:A:122:LYS:HD3	1:A:122:LYS:HA	1.80	0.43
3:C:215:MET:CE	12:C:302:HEC:C1B	2.96	0.43
5:F:400:TYR:OH	5:F:446:PHE:O	2.34	0.43
6:G:182:SER:O	6:G:186:HIS:ND1	2.46	0.43
2:N:320:TRP:CD2	2:N:321:PRO:HD2	2.54	0.43
2:N:333:PRO:HB2	2:N:335:PRO:HD2	2.01	0.43
3:O:195:ASP:OD1	3:O:196:LEU:N	2.52	0.43
9:V:48:LEU:O	9:V:51:LEU:HG	2.19	0.43
9:J:17:PRO:HG2	9:J:20:TRP:CD1	2.54	0.43
1:M:169:GLN:HB3	2:N:253:VAL:HB	2.01	0.43
2:N:332:ILE:HG23	2:N:336:VAL:HG21	2.01	0.43
5:R:227:LEU:HD13	5:R:262:PHE:CE2	2.54	0.43
5:R:342:PHE:HA	5:R:345:ILE:HG22	2.00	0.43
9:V:57:TYR:HA	9:V:60:ARG:HG2	2.01	0.43
1:A:87:LYS:O	1:A:91:ARG:HG3	2.19	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:B:72:SER:OG	2:B:74:VAL:HG12	2.19	0.42
2:B:177:ARG:O	2:B:181:SER:HB3	2.18	0.42
4:E:103:PHE:HA	4:E:106:ILE:HG12	2.01	0.42
5:F:263:GLY:O	5:F:266:GLU:HB2	2.19	0.42
1:M:136:THR:HG23	2:N:109:PHE:HB2	2.00	0.42
2:N:119:LEU:HD23	2:N:119:LEU:HA	1.90	0.42
2:N:148:ILE:O	2:N:152:LEU:HD23	2.19	0.42
4:Q:101:ILE:HG13	4:Q:102:PRO:CD	2.44	0.42
4:Q:252:ASN:HB3	5:R:253:LEU:HD23	2.00	0.42
5:R:11:LEU:HD12	8:U:48:LEU:HD22	2.01	0.42
2:B:119:LEU:HB2	3:C:261:MET:HE3	2.01	0.42
2:B:148:ILE:O	2:B:152:LEU:HD23	2.19	0.42
3:C:107:ARG:HB2	3:C:107:ARG:NH1	2.34	0.42
5:F:92:LEU:HD13	5:F:175:LEU:HD22	2.00	0.42
6:G:33:LEU:HA	6:G:36:GLU:OE2	2.19	0.42
6:G:63:THR:HG21	6:G:136:TYR:CE2	2.52	0.42
6:G:100:ARG:NH2	6:G:166:GLY:HA2	2.34	0.42
1:M:281:MET:HB2	1:M:323:ARG:HH11	1.83	0.42
2:N:265:LYS:HE3	3:O:276:ILE:HG23	2.01	0.42
5:R:67:ALA:HA	5:R:474:ASN:ND2	2.33	0.42
8:U:4:MET:HE2	8:U:4:MET:HA	2.02	0.42
3:C:195:ASP:OD1	3:C:196:LEU:N	2.52	0.42
1:M:374:CYS:HB3	1:M:375:HIS:CE1	2.54	0.42
3:O:108:MET:HG3	3:O:109:PRO:HD2	2.01	0.42
4:Q:233:ALA:HB3	4:Q:274:ALA:HB3	2.01	0.42
5:R:56:GLY:HA3	13:R:602:HEA:H161	2.01	0.42
5:R:103:ALA:HB2	5:R:213:ILE:HD11	2.01	0.42
3:C:208:MET:HE3	3:C:218:PHE:HB3	2.01	0.42
4:E:141:LYS:HD2	4:E:204:LEU:HD12	2.01	0.42
5:F:483:ILE:HD12	8:I:17:LEU:HD21	2.02	0.42
1:M:122:LYS:HA	1:M:122:LYS:HD3	1.79	0.42
2:N:111:ARG:NH2	11:N:602:HEM:O2A	2.48	0.42
2:N:273:ILE:HA	2:N:276:VAL:HG12	1.99	0.42
4:Q:319:PRO:HA	4:Q:320:PRO:HD3	1.96	0.42
9:V:75:ARG:HG3	9:V:76:ASP:N	2.32	0.42
2:B:64:TYR:CD2	2:B:110:VAL:HG11	2.55	0.42
5:F:539:GLU:N	5:F:539:GLU:OE1	2.53	0.42
13:F:602:HEA:C18	13:F:602:HEA:H261	2.50	0.42
1:M:76:TYR:CZ	2:N:530:ALA:HB2	2.54	0.42
1:M:323:ARG:NE	1:M:345:GLU:HG3	2.35	0.42
2:N:161:TYR:HA	2:N:310:MET:HE2	2.00	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:N:496:LEU:HD23	2:N:496:LEU:H	1.83	0.42
4:Q:154:LEU:HD11	4:Q:297:LYS:HB3	2.01	0.42
1:A:404:ASP:OD1	1:A:408:TYR:N	2.33	0.42
2:N:458:LEU:HB2	2:N:462:ALA:O	2.19	0.42
8:U:16:LEU:HD12	8:U:17:LEU:N	2.35	0.42
2:B:28:SER:OG	1:M:180:ASP:HB3	2.19	0.42
2:B:434:TRP:HZ3	5:R:32:ILE:HG13	1.85	0.42
3:C:134:ALA:O	3:C:137:GLN:HG3	2.19	0.42
3:C:263:ILE:HD11	7:T:120:PHE:HZ	1.84	0.42
5:F:102:PHE:HZ	5:F:410:THR:HG23	1.85	0.42
13:F:602:HEA:HBC1	13:F:602:HEA:CMC	2.48	0.42
2:N:26:HIS:O	2:N:26:HIS:ND1	2.50	0.42
9:V:17:PRO:HG2	9:V:20:TRP:CG	2.54	0.42
2:B:122:ALA:O	2:B:125:ILE:HG22	2.19	0.42
5:F:268:TYR:CD2	5:F:307:SER:HB2	2.55	0.42
5:F:359:MET:SD	5:F:360:LEU:HD22	2.60	0.42
5:R:509:ASP:HB2	5:R:519:TRP:HB3	2.01	0.42
13:R:601:HEA:HHA	13:R:601:HEA:HBA1	2.01	0.42
8:U:70:THR:OG1	9:V:112:SER:HB3	2.20	0.42
1:A:314:GLY:HA3	1:A:317:ASN:OD1	2.19	0.42
2:B:90:MET:HE3	2:B:90:MET:HB2	1.87	0.42
2:B:168:ASP:OD1	2:B:168:ASP:N	2.50	0.42
2:B:209:ILE:HD13	2:B:209:ILE:HA	1.91	0.42
5:F:155:THR:HG22	5:F:255:TRP:CD1	2.55	0.42
1:M:236:PRO:HA	1:M:241:LYS:HG2	2.02	0.42
4:Q:85:PRO:O	4:Q:87:GLN:HG2	2.20	0.42
6:S:195:LEU:O	6:S:199:ILE:HG22	2.20	0.42
2:B:14:LEU:HD11	2:B:16:ARG:NH2	2.35	0.42
2:B:22:ASP:OD2	1:M:181:ARG:NH1	2.40	0.42
2:B:159:GLU:OE2	2:B:216:HIS:ND1	2.52	0.42
2:B:418:ILE:O	2:B:422:ILE:HG12	2.20	0.42
5:F:18:PRO:HG2	5:F:504:VAL:HG11	2.01	0.42
5:F:330:THR:O	5:F:333:ILE:HG22	2.20	0.42
4:Q:136:PHE:CZ	4:Q:139:ASN:HB3	2.55	0.42
5:R:281:ILE:HD12	5:R:281:ILE:HA	1.92	0.42
6:S:61:PRO:O	6:S:63:THR:N	2.52	0.42
2:B:273:ILE:HA	2:B:276:VAL:HG12	2.02	0.41
2:B:306:PRO:HD2	2:B:314:GLU:HG3	2.02	0.41
2:B:333:PRO:HB2	2:B:335:PRO:HD2	2.01	0.41
5:F:118:PHE:HB3	5:F:121:LEU:HD23	2.02	0.41
3:O:102:GLN:OE1	3:O:107:ARG:HG3	2.20	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:O:228:LYS:O	3:O:232:ILE:HG12	2.20	0.41
4:Q:106:ILE:HG13	4:Q:107:SER:N	2.35	0.41
4:Q:330:THR:C	4:Q:332:ARG:H	2.28	0.41
6:S:24:MET:SD	6:S:25:VAL:HG23	2.60	0.41
8:U:44:HIS:NE2	9:V:40:HIS:O	2.49	0.41
9:V:33:GLU:HB3	9:V:36:GLU:OE1	2.19	0.41
2:B:74:VAL:HG11	2:N:74:VAL:HB	2.01	0.41
5:F:54:ILE:O	5:F:57:LEU:HG	2.20	0.41
8:I:78:THR:HG22	8:I:78:THR:O	2.20	0.41
2:N:381:ILE:O	2:N:384:MET:HB3	2.19	0.41
4:Q:88:PHE:HB2	5:R:561:GLY:H	1.84	0.41
6:S:25:VAL:HG12	6:S:180:VAL:HG11	2.02	0.41
6:S:65:LEU:HB3	6:S:200:TYR:CE1	2.55	0.41
5:F:30:LYS:O	5:F:34:THR:HB	2.20	0.41
5:F:107:LEU:HD12	5:F:213:ILE:HG21	2.01	0.41
5:F:261:PHE:HD1	5:F:311:TRP:CD2	2.38	0.41
5:F:337:THR:CG2	13:F:601:HEA:H263	2.49	0.41
6:G:72:PRO:O	6:G:76:VAL:HG23	2.20	0.41
1:M:129:ASP:OD1	3:O:242:ARG:NH2	2.36	0.41
2:N:55:PHE:O	2:N:59:LEU:HD23	2.20	0.41
2:N:417:ARG:HA	2:N:420:MET:HE1	2.01	0.41
5:R:98:ILE:HD12	5:R:98:ILE:HA	1.98	0.41
6:S:32:TRP:O	6:S:36:GLU:HG2	2.21	0.41
1:A:253:ARG:HB2	1:A:257:GLU:OE2	2.20	0.41
3:C:266:MET:O	3:C:270:ILE:HG12	2.19	0.41
4:E:149:PHE:CE2	4:E:154:LEU:HD12	2.56	0.41
5:F:101:GLY:O	5:F:105:LEU:HD23	2.19	0.41
5:F:342:PHE:HA	5:F:345:ILE:HG22	2.01	0.41
7:H:111:PRO:O	7:H:114:ILE:HG12	2.20	0.41
4:Q:144:TYR:OH	4:Q:214:VAL:O	2.30	0.41
5:R:155:THR:HG22	5:R:255:TRP:CD1	2.56	0.41
5:R:210:THR:O	5:R:213:ILE:HG22	2.21	0.41
1:A:91:ARG:NE	2:B:506:SER:HB3	2.34	0.41
2:B:329:HIS:O	2:B:329:HIS:ND1	2.54	0.41
3:C:201:GLU:HG2	3:C:202:GLN:N	2.35	0.41
3:C:260:ALA:HA	3:C:263:ILE:HG22	2.02	0.41
4:E:28:SER:O	4:E:32:GLY:N	2.53	0.41
2:N:349:LEU:HB3	2:N:350:PRO:HD3	2.01	0.41
4:Q:235:TRP:CD1	4:Q:242:LYS:HE2	2.56	0.41
6:S:34:SER:HB3	7:T:48:MET:CG	2.51	0.41
2:B:78:TYR:HB2	2:B:90:MET:SD	2.61	0.41

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:162:ASP:OD1	3:C:163:LEU:N	2.54	0.41
6:G:24:MET:SD	6:G:25:VAL:HG23	2.60	0.41
9:J:17:PRO:HA	9:J:18:PRO:HD2	1.87	0.41
1:M:356:LEU:HD22	2:N:182:SER:CB	2.51	0.41
1:M:402:THR:OG1	1:M:403:ILE:N	2.54	0.41
4:Q:39:ILE:HD13	4:Q:238:GLU:HB3	2.02	0.41
8:U:79:TRP:CG	9:V:104:CYS:HB3	2.56	0.41
4:E:273:CYS:HB3	4:E:281:HIS:CE1	2.55	0.41
4:E:282:SER:HB2	5:F:461:TYR:CD1	2.56	0.41
5:F:341:PHE:HZ	5:F:369:PHE:HD2	1.68	0.41
2:N:35:LEU:HD23	2:N:35:LEU:HA	1.93	0.41
4:Q:212:VAL:HB	4:Q:309:ASN:ND2	2.35	0.41
5:R:270:ILE:O	5:R:406:ILE:HD11	2.20	0.41
1:A:365:GLN:HE22	3:C:215:MET:N	2.19	0.41
2:B:108:LEU:HA	2:B:111:ARG:HG2	2.01	0.41
2:B:177:ARG:HB2	2:B:203:PHE:CZ	2.55	0.41
2:N:145:ASN:OD1	2:N:231:HIS:ND1	2.50	0.41
4:Q:241:PHE:HZ	4:Q:243:ARG:HH21	1.68	0.41
5:R:282:PHE:HE2	5:R:344:TRP:HB3	1.85	0.41
1:A:313:MET:SD	1:A:313:MET:N	2.94	0.41
1:A:356:LEU:HD12	1:A:375:HIS:CE1	2.56	0.41
2:B:26:HIS:O	2:B:26:HIS:ND1	2.51	0.41
2:B:71:PRO:HG3	2:B:213:TYR:CD2	2.56	0.41
2:B:505:GLY:HA3	6:S:97:PHE:HE2	1.86	0.41
5:F:224:PHE:HE1	5:F:266:GLU:OE2	2.04	0.41
5:F:274:PHE:CD1	5:F:406:ILE:HA	2.56	0.41
9:J:78:ALA:HB1	9:J:82:ARG:NH1	2.36	0.41
1:M:414:ASP:OD1	1:M:415:PHE:N	2.50	0.41
2:N:167:PRO:O	2:N:169:ASP:N	2.52	0.41
2:N:213:TYR:CZ	2:N:217:ILE:HD13	2.56	0.41
3:O:109:PRO:HG3	12:O:301:HEC:HHC	2.02	0.41
5:R:102:PHE:O	5:R:106:VAL:HG22	2.21	0.41
5:R:359:MET:SD	5:R:359:MET:C	3.04	0.41
5:R:397:HIS:O	5:R:401:VAL:HG22	2.21	0.41
5:R:550:MET:O	5:R:550:MET:HG3	2.21	0.41
9:V:19:GLY:CA	9:V:31:VAL:HG22	2.51	0.41
9:V:144:ILE:O	9:V:147:ILE:HG22	2.21	0.41
2:B:458:LEU:HB2	2:B:462:ALA:O	2.21	0.41
4:E:142:PHE:CE2	4:E:213:LEU:HB2	2.56	0.41
4:E:235:TRP:CE2	4:E:242:LYS:HE2	2.55	0.41
5:F:173:MET:SD	7:H:106:ILE:HG23	2.61	0.41

	A t and 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
8:I:6:ILE:HD12	8:I:6:ILE:H	1.85	0.41
2:N:100:ILE:HD12	2:N:100:ILE:HA	1.93	0.41
1:A:51:GLU:CD	1:M:179:ILE:HD12	2.46	0.40
3:C:226:GLU:H	3:C:226:GLU:CD	2.25	0.40
5:F:208:ILE:N	5:F:280:GLU:OE2	2.54	0.40
7:H:27:SER:O	7:H:28:MET:HE2	2.21	0.40
2:N:129:LEU:HD12	11:N:601:HEM:HMC2	2.03	0.40
2:N:250:GLU:CD	2:N:367:ASN:H	2.28	0.40
2:N:301:SER:OG	3:O:175:ALA:O	2.23	0.40
2:N:316:LEU:HG	2:N:338:VAL:HG22	2.03	0.40
1:A:110:LEU:HA	1:A:113:ILE:HG22	2.02	0.40
2:B:92:ARG:NH1	2:B:95:GLN:OE1	2.53	0.40
11:B:602:HEM:O1D	11:B:602:HEM:HHA	2.22	0.40
5:F:403:PHE:CE2	5:F:407:VAL:HG21	2.57	0.40
5:F:405:THR:HG23	5:F:406:ILE:N	2.36	0.40
5:F:440:ILE:O	5:F:444:THR:OG1	2.32	0.40
5:F:508:ASP:OD2	9:J:27:ARG:NH2	2.55	0.40
13:F:602:HEA:HBA1	13:F:602:HEA:CHA	2.51	0.40
2:N:119:LEU:HD22	2:N:308:PHE:CE1	2.56	0.40
2:N:316:LEU:HA	2:N:319:ILE:HG12	2.03	0.40
4:Q:60:VAL:O	4:Q:64:VAL:HG23	2.21	0.40
4:Q:139:ASN:OD1	4:Q:140:TRP:N	2.51	0.40
7:T:27:SER:O	7:T:28:MET:HE2	2.21	0.40
7:T:111:PRO:O	7:T:114:ILE:HG12	2.22	0.40
1:A:384:PHE:CE1	1:A:386:LYS:HB2	2.57	0.40
5:F:20:ARG:NH2	9:J:53:ASP:OD1	2.54	0.40
5:F:102:PHE:O	5:F:106:VAL:HG22	2.21	0.40
1:M:149:SER:HA	1:M:152:ILE:HG12	2.03	0.40
2:N:169:ASP:OD2	2:N:292:LEU:HD22	2.22	0.40
4:Q:39:ILE:HD11	4:Q:239:PHE:HD1	1.86	0.40
2:B:142:ARG:NH2	2:B:239:LYS:O	2.51	0.40
4:E:160:ASP:HB2	4:E:199:ASP:HA	2.04	0.40
5:F:279:SER:O	5:F:283:PRO:HD3	2.20	0.40
6:G:34:SER:HB3	7:H:48:MET:CG	2.51	0.40
3:O:201:GLU:OE1	3:O:201:GLU:N	2.38	0.40
6:S:21:ARG:HB2	7:T:66:ARG:HD3	2.03	0.40
6:S:61:PRO:C	6:S:63:THR:N	2.73	0.40
9:V:88:VAL:HG12	9:V:90:THR:H	1.87	0.40
2:B:154:ILE:HG13	2:B:346:PHE:CD2	2.57	0.40
4:E:238:GLU:HG3	4:E:269:PHE:CD1	2.57	0.40
4:E:298:ALA:HA	4:E:301:GLN:NE2	2.36	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
5:F:39:MET:HE3	5:F:43:MET:HE3	2.04	0.40	
6:G:20:ASN:OD1	6:G:20:ASN:N	2.53	0.40	
2:N:122:ALA:O	2:N:125:ILE:HG22	2.22	0.40	
4:Q:273:CYS:HB3	4:Q:281:HIS:CE1	2.57	0.40	
5:R:146:ALA:HA	5:R:167:GLY:HA3	2.04	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers Percer		ntiles
1	А	376/429~(88%)	345~(92%)	31 (8%)	0	100	100
1	М	366/429~(85%)	338~(92%)	28 (8%)	0	100	100
2	В	522/573~(91%)	477 (91%)	45 (9%)	0	100	100
2	Ν	522/573~(91%)	482 (92%)	40 (8%)	0	100	100
3	С	214/280~(76%)	198 (92%)	16 (8%)	0	100	100
3	Ο	207/280~(74%)	192 (93%)	15 (7%)	0	100	100
4	Е	272/363~(75%)	256 (94%)	16 (6%)	0	100	100
4	Q	279/363~(77%)	260 (93%)	18 (6%)	1 (0%)	30	68
5	F	550/573~(96%)	528 (96%)	22 (4%)	0	100	100
5	R	550/573~(96%)	528 (96%)	22 (4%)	0	100	100
6	G	184/203~(91%)	179 (97%)	5 (3%)	0	100	100
6	S	183/203~(90%)	177 (97%)	5 (3%)	1 (0%)	25	64
7	Н	137/139~(99%)	132 (96%)	5 (4%)	0	100	100
7	Т	137/139~(99%)	133 (97%)	4 (3%)	0	100	100
8	Ι	63/79~(80%)	58 (92%)	5 (8%)	0	100	100
8	U	63/79~(80%)	62 (98%)	1 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
9	J	141/155~(91%)	135 (96%)	5 (4%)	1 (1%)	19 56
9	V	141/155~(91%)	137~(97%)	4 (3%)	0	100 100
All	All	4907/5588 (88%)	4617 (94%)	287 (6%)	3~(0%)	50 83

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
9	J	18	PRO
4	Q	33	ILE
6	S	62	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	296/343~(86%)	296 (100%)	0	100 100
1	М	294/343~(86%)	294 (100%)	0	100 100
2	В	422/466~(91%)	422 (100%)	0	100 100
2	Ν	419/466~(90%)	419 (100%)	0	100 100
3	С	131/207~(63%)	131 (100%)	0	100 100
3	Ο	128/207~(62%)	128 (100%)	0	100 100
4	Ε	236/306~(77%)	236 (100%)	0	100 100
4	Q	238/306~(78%)	238 (100%)	0	100 100
5	F	449/466~(96%)	449 (100%)	0	100 100
5	R	449/466~(96%)	449 (100%)	0	100 100
6	G	153/166~(92%)	153 (100%)	0	100 100
6	S	152/166~(92%)	152 (100%)	0	100 100
7	Н	$100/101 \ (99\%)$	100 (100%)	0	100 100
7	Т	99/101~(98%)	99 (100%)	0	100 100
8	Ι	54/62~(87%)	54 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
8	U	53/62~(86%)	53~(100%)	0	100 100
9	J	103/115~(90%)	103 (100%)	0	100 100
9	V	105/115~(91%)	104 (99%)	1 (1%)	73 81
All	All	3881/4464 (87%)	3880 (100%)	1 (0%)	100 100

All (1) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
9	V	16	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (22) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	172	HIS
1	А	317	ASN
2	В	112	GLN
3	С	173	ASN
3	С	213	GLN
4	Е	91	ASN
5	F	104	ASN
5	F	474	ASN
5	F	529	ASN
5	F	559	HIS
6	G	174	GLN
7	Н	139	HIS
2	N	238	GLN
2	Ν	448	HIS
3	0	161	ASN
3	0	179	ASN
4	Q	197	ASN
4	Q	302	GLN
5	R	434	HIS
5	R	559	HIS
6	S	23	ASN
6	S	85	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

14 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	В	ond leng	gths	Bo	ond angl	es
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
13	HEA	F	602	-	57,67,67	2.03	14 (24%)	61,103,103	2.33	24 (39%)
13	HEA	R	602	5	57,67,67	1.98	14 (24%)	61,103,103	2.38	23 (37%)
12	HEC	С	301	-	32,50,50	2.25	4 (12%)	24,82,82	1.27	2 (8%)
10	FES	А	501	1	0,4,4	-	-	-		
11	HEM	Ν	602	2	41,50,50	1.47	3 (7%)	45,82,82	1.43	7 (15%)
12	HEC	Ο	301	3	32,50,50	2.22	3 (9%)	24,82,82	1.33	2 (8%)
13	HEA	F	601	5	57,67,67	1.99	14 (24%)	61,103,103	2.43	26 (42%)
12	HEC	Ο	302	3	32,50,50	2.38	12 (37%)	24,82,82	2.11	6 (25%)
12	HEC	С	302	3	32,50,50	2.24	3 (9%)	24,82,82	1.37	2 (8%)
11	HEM	В	602	2	41,50,50	1.33	5 (12%)	45,82,82	1.76	8 (17%)
11	HEM	Ν	601	2	41,49,50	1.28	3 (7%)	46,81,82	1.21	3 (6%)
10	FES	М	501	1	0,4,4	-	-	-		
13	HEA	R	601	5	57,67,67	1.99	14 (24%)	61,103,103	2.43	24 (39%)
11	HEM	В	601	2	41,49,50	1.27	3 (7%)	46,81,82	1.21	3 (6%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	HEA	F	602	-	-	19/32/76/76	-
13	HEA	R	602	5	-	17/32/76/76	-
12	HEC	С	301	-	-	3/10/54/54	-
10	FES	А	501	1	-	-	0/1/1/1
11	HEM	Ν	602	2	-	2/12/54/54	-
12	HEC	0	301	3	-	3/10/54/54	-
13	HEA	F	601	5	-	15/32/76/76	-
12	HEC	0	302	3	-	1/10/54/54	-
12	HEC	С	302	3	-	0/10/54/54	-
11	HEM	В	602	2	-	4/12/54/54	-
11	HEM	N	601	2	-	0/12/52/54	-
10	FES	М	501	1	-	-	0/1/1/1
13	HEA	R	601	5	-	11/32/76/76	-
11	HEM	В	601	2	-	0/12/52/54	-

All (92) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
12	0	302	HEC	C2B-C3B	7.01	1.48	1.40
12	С	301	HEC	C3C-C2C	-6.61	1.33	1.40
12	С	302	HEC	C3C-C2C	-6.57	1.33	1.40
12	С	301	HEC	C2B-C3B	-6.56	1.33	1.40
12	0	301	HEC	C2B-C3B	-6.56	1.33	1.40
12	С	302	HEC	C2B-C3B	-6.51	1.34	1.40
12	0	301	HEC	C3C-C2C	-6.38	1.34	1.40
12	0	302	HEC	C3C-C2C	6.31	1.47	1.40
12	С	302	HEC	C3D-C2D	5.43	1.53	1.37
12	0	301	HEC	C3D-C2D	5.39	1.53	1.37
12	С	301	HEC	C3D-C2D	5.38	1.53	1.37
13	F	602	HEA	C3B-C2B	5.31	1.46	1.34
13	R	602	HEA	C3B-C2B	5.31	1.46	1.34
13	R	601	HEA	C3B-C2B	5.27	1.46	1.34
13	F	601	HEA	C3B-C2B	5.26	1.46	1.34
13	F	601	HEA	CHC-C4B	4.98	1.47	1.35
13	R	601	HEA	CHC-C4B	4.97	1.47	1.35
13	F	602	HEA	C3D-C2D	4.90	1.47	1.36
13	R	602	HEA	CHC-C4B	4.90	1.47	1.35
13	F	602	HEA	CHC-C4B	4.89	1.47	1.35
13	R	601	HEA	C3D-C2D	4.80	1.46	1.36
13	F	601	HEA	C3D-C2D	4.80	1.46	1.36
13	F	602	HEA	C3A-C2A	4.73	1.46	1.40

0 01000		· p. 000	o all page				
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
13	R	602	HEA	C3D-C2D	4.66	1.46	1.36
13	F	602	HEA	CHD-C1D	4.55	1.46	1.35
13	R	601	HEA	C3A-C2A	4.51	1.46	1.40
13	F	601	HEA	C3A-C2A	4.48	1.46	1.40
13	R	602	HEA	C3A-C2A	4.47	1.46	1.40
13	R	601	HEA	CHD-C1D	4.42	1.46	1.35
13	F	601	HEA	CHD-C1D	4.42	1.46	1.35
13	R	602	HEA	CHD-C1D	4.40	1.46	1.35
13	F	601	HEA	C3C-C2C	4.38	1.46	1.40
13	F	602	HEA	C3C-C2C	4.37	1.46	1.40
13	R	601	HEA	C3C-C2C	4.33	1.46	1.40
13	R	602	HEA	C3C-C2C	4.29	1.46	1.40
11	Ν	602	HEM	C3C-C2C	-4.00	1.34	1.40
11	Ν	602	HEM	C3C-CAC	3.64	1.55	1.47
12	0	302	HEC	C2A-C3A	3.45	1.47	1.37
11	В	602	HEM	C1B-NB	-3.35	1.34	1.40
11	В	602	HEM	C4D-ND	-3.35	1.34	1.40
13	F	602	HEA	C1D-ND	-3.34	1.34	1.40
13	R	602	HEA	C1D-ND	-3.32	1.34	1.40
12	0	302	HEC	C3D-C2D	3.32	1.47	1.37
13	F	601	HEA	C1D-ND	-3.28	1.34	1.40
13	R	601	HEA	C1D-ND	-3.28	1.34	1.40
12	0	302	HEC	C3C-C4C	3.22	1.48	1.43
11	Ν	602	HEM	CAB-C3B	2.99	1.55	1.47
13	R	601	HEA	FE-NB	2.99	2.11	1.96
13	F	602	HEA	C4B-NB	-2.99	1.35	1.40
13	R	602	HEA	FE-NB	2.97	2.11	1.96
13	F	601	HEA	FE-NB	2.97	2.11	1.96
13	F	602	HEA	FE-NB	2.97	2.11	1.96
11	Ν	601	HEM	CAB-C3B	2.94	1.55	1.47
13	R	602	HEA	C4B-NB	-2.89	1.35	1.40
11	В	601	HEM	CAB-C3B	2.89	1.55	1.47
12	0	302	HEC	C2A-C1A	2.87	1.49	1.42
13	F	601	HEA	C4B-NB	-2.86	1.35	1.40
12	0	302	HEC	C3A-C4A	2.84	1.49	1.42
13	F	601	HEA	FE-ND	2.81	2.10	1.96
12	0	302	HEC	C4D-CHA	2.81	1.48	1.41
11	В	602	HEM	FE-NB	2.81	2.10	1.96
12	0	302	HEC	C1B-CHB	2.80	1.48	1.41
13	R	601	HEA	FE-ND	2.80	2.10	1.96
13	R	601	HEA	C4B-NB	-2.78	1.35	1.40
13	R	602	HEA	FE-ND	2.75	2.10	1.96

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
13	F	602	HEA	FE-ND	2.74	2.10	1.96
12	0	302	HEC	C4B-C3B	2.71	1.48	1.43
13	F	602	HEA	C2A-C1A	2.71	1.48	1.42
13	F	601	HEA	C4B-C3B	2.70	1.49	1.44
13	R	601	HEA	C4B-C3B	2.66	1.49	1.44
13	R	602	HEA	C4B-C3B	2.51	1.48	1.44
13	R	602	HEA	C2A-C1A	2.51	1.48	1.42
13	F	602	HEA	C4B-C3B	2.50	1.48	1.44
13	F	601	HEA	C2A-C1A	2.47	1.48	1.42
13	R	601	HEA	C2A-C1A	2.46	1.48	1.42
13	F	601	HEA	C1C-CHC	2.42	1.47	1.41
13	R	601	HEA	C1C-CHC	2.42	1.47	1.41
11	N	601	HEM	C2C-C3C	-2.40	1.33	1.41
13	F	602	HEA	C1C-CHC	2.39	1.47	1.41
11	В	601	HEM	C2C-C3C	-2.39	1.33	1.41
13	R	602	HEA	C1C-CHC	2.36	1.47	1.41
12	0	302	HEC	C1D-CHD	2.33	1.47	1.41
12	0	302	HEC	C1C-CHC	2.29	1.47	1.41
11	В	602	HEM	CHB-C1B	2.19	1.40	1.35
13	F	602	HEA	C4C-CHD	2.16	1.47	1.41
11	N	601	HEM	CAA-C2A	2.08	1.55	1.52
12	С	301	HEC	CAD-C3D	2.06	1.55	1.52
13	R	601	HEA	C4C-CHD	2.06	1.46	1.41
13	F	601	HEA	C4C-CHD	2.05	1.46	1.41
11	В	601	HEM	CAA-C2A	2.05	1.55	1.52
11	В	602	HEM	C1D-ND	-2.05	1.34	1.38
13	R	602	HEA	C4C-CHD	2.02	1.46	1.41

All (130) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	R	601	HEA	C3D-C4D-ND	6.46	116.61	110.36
13	F	601	HEA	C3D-C4D-ND	6.46	116.61	110.36
12	0	302	HEC	C1D-C2D-C3D	-6.43	102.52	107.00
13	F	602	HEA	C3D-C4D-ND	6.05	116.22	110.36
13	R	602	HEA	C3D-C4D-ND	6.03	116.20	110.36
13	R	601	HEA	C2D-C1D-ND	5.71	116.60	109.84
13	F	601	HEA	C2D-C1D-ND	5.66	116.55	109.84
13	R	602	HEA	C2D-C1D-ND	5.52	116.38	109.84
13	R	602	HEA	C2B-C1B-NB	5.40	116.34	109.88
13	F	601	HEA	C2B-C1B-NB	5.39	116.34	109.88
13	R	601	HEA	C2B-C1B-NB	5.39	116.33	109.88

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	F	602	HEA	C2B-C1B-NB	5.32	116.26	109.88
13	F	602	HEA	C2D-C1D-ND	5.27	116.08	109.84
13	R	602	HEA	C3B-C4B-NB	5.25	116.06	109.84
13	F	602	HEA	C3B-C4B-NB	5.25	116.06	109.84
13	R	601	HEA	C3B-C4B-NB	5.04	115.82	109.84
13	F	601	HEA	C3B-C4B-NB	5.02	115.78	109.84
11	В	602	HEM	CHC-C4B-NB	4.81	129.66	124.43
13	F	601	HEA	C1D-C2D-C3D	-4.56	102.16	106.96
13	R	602	HEA	C1D-C2D-C3D	-4.56	102.17	106.96
13	R	601	HEA	C1D-C2D-C3D	-4.54	102.18	106.96
11	В	602	HEM	C1B-NB-C4B	4.48	109.70	105.07
13	F	602	HEA	C1D-C2D-C3D	-4.36	102.38	106.96
13	R	602	HEA	C3C-C4C-NC	3.91	114.26	109.21
11	В	602	HEM	CHD-C1D-ND	3.88	128.64	124.43
13	F	601	HEA	C3C-C4C-NC	3.87	114.21	109.21
13	R	601	HEA	C3C-C4C-NC	3.86	114.20	109.21
12	0	302	HEC	CMB-C2B-C3B	3.74	130.21	125.82
13	F	601	HEA	CHA-C4D-C3D	-3.67	119.44	124.84
13	R	601	HEA	CHA-C4D-C3D	-3.65	119.48	124.84
13	F	602	HEA	C3C-C4C-NC	3.60	113.87	109.21
12	0	302	HEC	CMC-C2C-C3C	3.46	129.89	125.82
13	R	602	HEA	CAD-CBD-CGD	-3.46	106.16	113.60
13	R	602	HEA	CHA-C4D-C3D	-3.38	119.87	124.84
13	F	602	HEA	C1B-C2B-C3B	-3.30	102.85	106.80
13	R	602	HEA	C1B-C2B-C3B	-3.30	102.85	106.80
13	F	601	HEA	C1B-C2B-C3B	-3.26	102.90	106.80
13	R	601	HEA	C1B-C2B-C3B	-3.24	102.92	106.80
13	F	602	HEA	CMC-C2C-C3C	3.24	130.74	124.68
13	R	602	HEA	CMC-C2C-C3C	3.18	130.63	124.68
13	F	601	HEA	CMC-C2C-C3C	3.18	130.62	124.68
13	\mathbf{F}	601	HEA	CAD-CBD-CGD	-3.17	106.77	113.60
13	R	601	HEA	CAD-CBD-CGD	-3.16	106.79	113.60
13	R	601	HEA	CMC-C2C-C3C	3.16	130.59	124.68
13	R	601	HEA	C4D-C3D-C2D	-3.08	102.41	106.90
13	F	602	HEA	C4B-C3B-C2B	-3.08	102.16	107.41
11	В	602	HEM	CHA-C4D-ND	3.07	128.17	124.38
13	F	602	HEA	C4D-C3D-C2D	-3.06	102.43	106.90
13	F	601	HEA	C4D-C3D-C2D	-3.06	102.44	106.90
13	R	602	HEA	C4B-C3B-C2B	-3.06	102.19	107.41
13	R	601	HEA	CHB-C1B-C2B	-3.05	120.21	124.98
13	R	$60\overline{2}$	HEA	CHB-C1B-C2B	-3.04	$120.2\overline{3}$	124.98
13	F	601	HEA	CHB-C1B-C2B	-3.04	120.23	124.98

3 4 1				A 1	77	(1)	\mathbf{T}	
Mol	Chain	Res	Type	Atoms	Z	Observed(⁶)	Ideal(°)	
13	R	601	HEA	C4B-C3B-C2B	-3.01	102.27	107.41	
13	F'	601	HEA	C4B-C3B-C2B	-3.01	102.27	107.41	
13	F'	602	HEA	CHA-C4D-C3D	-3.00	120.42	124.84	
13	F	602	HEA	CAD-CBD-CGD	-2.98	107.18	113.60	
13	F	602	HEA	C27-C19-C20	2.95	120.23	115.27	
11	В	602	HEM	C4D-ND-C1D	2.93	108.10	105.07	
13	R	601	HEA	C27-C19-C20	2.89	120.13	115.27	
13	R	602	HEA	C4D-C3D-C2D	-2.88	102.70	106.90	
13	F	602	HEA	CHB-C1B-C2B	-2.87	120.50	124.98	
11	В	602	HEM	CHB-C1B-NB	2.83	127.88	124.38	
13	R	601	HEA	C1D-ND-C4D	-2.78	102.20	105.07	
13	R	601	HEA	C17-C18-C19	-2.78	120.98	127.66	
11	N	602	HEM	C4B-CHC-C1C	2.74	126.18	122.56	
13	F	601	HEA	C17-C18-C19	-2.74	121.06	127.66	
13	F	601	HEA	C1D-ND-C4D	-2.74	102.25	105.07	
13	R	602	HEA	C27-C19-C20	2.72	119.84	115.27	
13	R	602	HEA	C17-C18-C19	-2.69	121.18	127.66	
13	F	601	HEA	C27-C19-C20	2.67	119.76	115.27	
11	Ν	602	HEM	C3B-C2B-C1B	2.62	108.43	106.49	
13	F	602	HEA	C17-C18-C19	-2.62	121.34	127.66	
11	N	602	HEM	C4D-ND-C1D	2.61	107.76	105.07	
11	N	601	HEM	C4D-ND-C1D	2.59	107.75	105.07	
13	R	601	HEA	CBA-CAA-C2A	-2.58	108.26	112.60	
11	N	602	HEM	C1B-NB-C4B	2.57	107.72	105.07	
12	0	302	HEC	CBA-CAA-C2A	-2.57	108.28	112.60	
13	F	601	HEA	CAD-C3D-C2D	2.56	132.64	127.88	
13	R	601	HEA	CAD-C3D-C2D	2.55	132.63	127.88	
13	F	601	HEA	CBA-CAA-C2A	-2.51	108.37	112.60	
11	В	601	HEM	C4D-ND-C1D	2.51	107.67	105.07	
13	R	601	HEA	OMA-CMA-C3A	-2.49	119.48	124.91	
11	N	602	HEM	CMC-C2C-C3C	2.49	129.33	124.68	
12	0	301	HEC	CMC-C2C-C1C	-2.46	124.69	128.46	
13	R	602	HEA	C4B-NB-C1B	-2.44	102.55	105.07	
13	R	602	HEA	C1D-ND-C4D	-2.44	102.55	105.07	
11	В	601	HEM	CMA-C3A-C4A	-2.43	124.72	128.46	
13	F	601	HEA	OMA-CMA-C3A	-2.43	119.61	124.91	
12	0	301	HEC	C1D-C2D-C3D	-2.42	105.31	107.00	
11	N	601	HEM	CMA-C3A-C4A	-2.40	124.78	128.46	
11	В	602	HEM	CBA-CAA-C2A	-2.39	108.54	112.62	
12	0	302	HEC	CBD-CAD-C3D	-2.39	108.54	112.62	
12	Č	301	HEC	CMB-C2B-C1B	-2.39	124.80	128.46	
13	R	601	HEA	C4B-NB-C1B	-2.34	102.66	105.07	

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	F	602	HEA	CAD-C3D-C2D	2.33	132.22	127.88
13	F	602	HEA	C4B-NB-C1B	-2.32	102.67	105.07
12	С	301	HEC	C1D-C2D-C3D	-2.31	105.39	107.00
13	R	602	HEA	CBA-CAA-C2A	-2.30	108.72	112.60
13	F	601	HEA	C4B-NB-C1B	-2.30	102.70	105.07
13	R	601	HEA	C17-C16-C15	-2.30	105.43	112.98
12	С	302	HEC	CMC-C2C-C1C	-2.24	125.02	128.46
13	F	602	HEA	CHC-C4B-NB	-2.24	121.62	124.38
13	R	602	HEA	CHD-C1D-C2D	-2.23	120.56	126.72
11	Ν	601	HEM	C1B-NB-C4B	2.22	107.36	105.07
12	0	302	HEC	CMD-C2D-C3D	2.22	129.12	124.94
13	F	601	HEA	C17-C16-C15	-2.21	105.69	112.98
13	R	601	HEA	CHD-C1D-C2D	-2.20	120.63	126.72
13	R	602	HEA	C17-C16-C15	-2.19	105.78	112.98
11	Ν	602	HEM	CBA-CAA-C2A	-2.18	108.90	112.62
13	F	601	HEA	CHD-C1D-C2D	-2.16	120.75	126.72
11	В	601	HEM	C1B-NB-C4B	2.16	107.30	105.07
12	С	302	HEC	C1D-C2D-C3D	-2.16	105.50	107.00
13	F	601	HEA	C26-C15-C14	-2.14	118.19	123.68
13	F	602	HEA	C1D-ND-C4D	-2.11	102.89	105.07
13	F	602	HEA	C17-C16-C15	-2.11	106.03	112.98
11	Ν	602	HEM	CMA-C3A-C4A	-2.11	125.22	128.46
13	F	601	HEA	C12-C13-C14	-2.10	106.68	112.23
13	R	602	HEA	CMB-C2B-C1B	2.08	128.21	125.04
11	В	602	HEM	CHD-C1D-C2D	-2.08	121.74	124.98
13	F	602	HEA	CMB-C2B-C1B	2.05	128.17	125.04
13	F	601	HEA	CMB-C2B-C1B	2.05	128.16	125.04
13	R	602	HEA	CMD-C2D-C1D	2.05	128.16	125.04
13	F	602	HEA	C26-C15-C14	-2.05	118.43	123.68
13	R	602	HEA	CAD-C3D-C2D	2.04	131.68	127.88
13	F	602	HEA	CHD-C1D-C2D	-2.04	121.09	126.72
13	F	601	HEA	C25-C23-C24	2.02	119.07	114.60
13	R	601	HEA	CMB-C2B-C1B	2.02	128.11	125.04
13	F	602	HEA	CBA-CAA-C2A	-2.01	109.22	112.60
13	R	601	HEA	C25-C23-C24	2.01	119.03	114.60

There are no chirality outliers.

All (75) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
12	0	301	HEC	C2A-CAA-CBA-CGA
13	F	601	HEA	C4D-C3D-CAD-CBD

Mol	Chain	Res	Type	Atoms
13	F	601	HEA	C13-C14-C15-C16
13	F	601	HEA	C13-C14-C15-C26
13	F	601	HEA	C14-C15-C16-C17
13	F	601	HEA	C17-C18-C19-C27
13	F	601	HEA	C21-C22-C23-C24
13	F	601	HEA	C21-C22-C23-C25
13	F	602	HEA	C1A-C2A-CAA-CBA
13	F	602	HEA	C3A-C2A-CAA-CBA
13	F	602	HEA	C2A-CAA-CBA-CGA
13	F	602	HEA	C4D-C3D-CAD-CBD
13	F	602	HEA	C13-C14-C15-C26
13	F	602	HEA	C14-C15-C16-C17
13	F	602	HEA	C15-C16-C17-C18
13	F	602	HEA	C17-C18-C19-C20
13	F	602	HEA	C17-C18-C19-C27
13	R	601	HEA	C4D-C3D-CAD-CBD
13	R	601	HEA	C3B-C11-C12-C13
13	R	601	HEA	O11-C11-C12-C13
13	R	601	HEA	C13-C14-C15-C16
13	R	601	HEA	C13-C14-C15-C26
13	R	601	HEA	C21-C22-C23-C25
13	R	602	HEA	C2D-C3D-CAD-CBD
13	R	602	HEA	C4D-C3D-CAD-CBD
13	R	602	HEA	C13-C14-C15-C26
13	R	602	HEA	C14-C15-C16-C17
13	R	602	HEA	C15-C16-C17-C18
13	R	602	HEA	C17-C18-C19-C27
13	R	602	HEA	C27-C19-C20-C21
13	R	602	HEA	C21-C22-C23-C25
13	R	601	HEA	C21-C22-C23-C24
13	R	602	HEA	C21-C22-C23-C24
13	F	601	HEA	C2D-C3D-CAD-CBD
13	F	602	HEA	C2D-C3D-CAD-CBD
13	R	601	HEA	C2D-C3D-CAD-CBD
13	F	602	HEA	C27-C19-C20-C21
13	F	602	HEA	C21-C22-C23-C24
13	F	602	HEA	C21-C22-C23-C25
13	F	601	HEA	C17-C18-C19-C20
13	R	602	HEA	C17-C18-C19-C20
11	В	602	HEM	C3D-CAD-CBD-CGD
13	R	602	HEA	C18-C19-C20-C21
13	F	602	HEA	C19-C20-C21-C22

Continued from previous page...

EMD-34664,	8HCR
------------	------

	itaea jien	t proce	a as page	
Mol	Chain	\mathbf{Res}	Type	Atoms
13	R	602	HEA	C19-C20-C21-C22
12	С	301	HEC	C3D-CAD-CBD-CGD
12	0	302	HEC	C2A-CAA-CBA-CGA
13	F	601	HEA	C19-C20-C21-C22
11	Ν	602	HEM	C3D-CAD-CBD-CGD
11	В	602	HEM	C2B-C3B-CAB-CBB
11	В	602	HEM	C4B-C3B-CAB-CBB
13	F	601	HEA	C11-C12-C13-C14
11	Ν	602	HEM	C4B-C3B-CAB-CBB
12	0	301	HEC	C1A-C2A-CAA-CBA
12	0	301	HEC	C3A-C2A-CAA-CBA
13	R	602	HEA	C1A-C2A-CAA-CBA
13	R	602	HEA	C3A-C2A-CAA-CBA
13	F	601	HEA	CAA-CBA-CGA-O1A
13	R	602	HEA	CAA-CBA-CGA-O1A
13	F	602	HEA	CAA-CBA-CGA-O1A
13	F	601	HEA	CAA-CBA-CGA-O2A
13	R	601	HEA	CAA-CBA-CGA-O1A
12	С	301	HEC	CAA-CBA-CGA-O2A
12	С	301	HEC	CAA-CBA-CGA-O1A
13	R	601	HEA	CAA-CBA-CGA-O2A
13	F	601	HEA	CAD-CBD-CGD-O2D
13	R	601	HEA	CAD-CBD-CGD-O2D
11	В	602	HEM	C4D-C3D-CAD-CBD
13	F	602	HEA	CAA-CBA-CGA-O2A
13	F	602	HEA	CAD-CBD-CGD-O2D
13	R	602	HEA	CAD-CBD-CGD-O2D
13	F	602	HEA	CAD-CBD-CGD-O1D
13	F	601	HEA	C3B-C11-C12-C13
13	F	602	HEA	C3B-C11-C12-C13
13	R	602	HEA	CAA-CBA-CGA-O2A

Continued from previous page...

There are no ring outliers.

12 monomers are involved in 76 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
13	F	602	HEA	11	0
13	R	602	HEA	10	0
12	С	301	HEC	4	0
11	Ν	602	HEM	5	0
12	0	301	HEC	4	0
13	F	601	HEA	11	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
12	0	302	HEC	12	0
12	С	302	HEC	3	0
11	В	602	HEM	6	0
11	Ν	601	HEM	2	0
13	R	601	HEA	6	0
11	В	601	HEM	2	0

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Tomogram visualisation (i)

This section contains visualisations of the EMDB entry EMD-34664. These allow visual inspection of the internal detail of the tomogram and identification of artifacts.

6.1 Orthogonal projections (i)

The images above show the tomogram projected in three orthogonal directions.

6.2 Central slices (i)

X Index: 250

Y Index: 250

Z Index: 250

The images above show central slices of the tomogram in three orthogonal directions.

6.3 Largest variance slices (i)

The images above show the largest variance slices of the tomogram in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

The images above show the tomogram projected in three orthogonal directions.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Tomogram analysis (i)

This section contains the results of statistical analysis of the tomogram.

7.1 Voxel-value distribution (i)

The voxel-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic.

8 Map-model fit (i)

This section was not generated.

