

Full wwPDB X-ray Structure Validation Report (i)

Oct 28, 2024 – 12:31 pm GMT

:	6ZTH
:	Phospholipase PlaB from Legionella pneumophila
:	Diwo, M.G.; Flieger, A.; Blankenfeldt, W.
:	2020-07-20
:	2.30 Å(reported)
	: : : :

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	3.0
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	164625	5963(2.30-2.30)
Clashscore	180529	6698 (2.30-2.30)
Ramachandran outliers	177936	6640 (2.30-2.30)
Sidechain outliers	177891	6640 (2.30-2.30)
RSRZ outliers	164620	5963 (2.30-2.30)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			66%		
1	А	489	72%	23%	• •
			67%		
1	В	489	72%	22%	••
			69%		
1	С	489	73%	20%	• •
			72%		
1	D	489	71%	23%	• •

$6\mathrm{ZTH}$

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 30812 atoms, of which 14970 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Ato	ms		ZeroOcc	AltConf	Trace		
1	Λ	470	Total	С	Η	Ν	0	S	Se	0	7	0
	A	470	7444	2372	3694	661	699	5	13	0	1	0
1	В	470	Total	С	Η	Ν	0	S	Se	0	1	0
1	D	470	7417	2360	3683	661	695	5	13	0	1	0
1	С	467	Total	С	Η	Ν	0	S	Se	0	2	0
	U	407	7417	2358	3697	657	687	5	13	0	2	0
1	П	474	Total	С	Н	Ν	0	S	Se	1	0	0
	414	7431	2369	3688	658	698	5	13		0	U	

• Molecule 1 is a protein called PlaB phospholipase.

There are 64 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-14	MSE	-	initiating methionine	UNP A0A378K488
А	-13	ALA	-	expression tag	UNP A0A378K488
А	-12	SER	-	expression tag	UNP A0A378K488
А	-11	TRP	-	expression tag	UNP A0A378K488
А	-10	SER	-	expression tag	UNP A0A378K488
A	-9	HIS	-	expression tag	UNP A0A378K488
А	-8	PRO	-	expression tag	UNP A0A378K488
А	-7	GLN	-	expression tag	UNP A0A378K488
А	-6	PHE	-	expression tag	UNP A0A378K488
А	-5	GLU	-	expression tag	UNP A0A378K488
А	-4	LYS	-	expression tag	UNP A0A378K488
A	-3	GLY	-	expression tag	UNP A0A378K488
А	-2	ALA	-	expression tag	UNP A0A378K488
А	-1	GLY	-	expression tag	UNP A0A378K488
А	0	THR	-	expression tag	UNP A0A378K488
A	203	ASN	ASP	conflict	UNP A0A378K488
В	-14	MSE	-	initiating methionine	UNP A0A378K488
В	-13	ALA	-	expression tag	UNP A0A378K488
В	-12	SER	-	expression tag	UNP A0A378K488
В	-11	TRP	-	expression tag	UNP A0A378K488
В	-10	SER	-	expression tag	UNP A0A378K488

Chain	Residue	Modelled	Actual	Comment	Reference							
В	-9	HIS	-	expression tag	UNP A0A378K488							
В	-8	PRO	-	expression tag	UNP A0A378K488							
В	-7	GLN	-	expression tag	UNP A0A378K488							
В	-6	PHE	-	expression tag	UNP A0A378K488							
В	-5	GLU	-	expression tag	UNP A0A378K488							
В	-4	LYS	-	expression tag	UNP A0A378K488							
В	-3	GLY	-	expression tag	UNP A0A378K488							
В	-2	ALA	-	expression tag	UNP A0A378K488							
В	-1	GLY	-	expression tag	UNP A0A378K488							
В	0	THR	-	expression tag	UNP A0A378K488							
В	203	ASN	ASP	conflict	UNP A0A378K488							
С	-14	MSE	-	initiating methionine	UNP A0A378K488							
С	-13	ALA	-	expression tag	UNP A0A378K488							
С	-12	SER	-	expression tag	UNP A0A378K488							
С	-11	TRP	-	expression tag	UNP A0A378K488							
С	-10	SER	-	expression tag	UNP A0A378K488							
С	-9	HIS	-	expression tag	UNP A0A378K488							
С	-8	PRO	-	expression tag	UNP A0A378K488							
С	-7	GLN	-	expression tag	UNP A0A378K488							
С	-6	PHE	-	expression tag	UNP A0A378K488							
С	-5	GLU	-	expression tag	UNP A0A378K488							
С	-4	LYS	-	expression tag	UNP A0A378K488							
С	-3	GLY	-	expression tag	UNP A0A378K488							
С	-2	ALA	-	expression tag	UNP A0A378K488							
С	-1	GLY	-	expression tag	UNP A0A378K488							
С	0	THR	-	expression tag	UNP A0A378K488							
C	203	ASN	ASP	conflict	UNP A0A378K488							
D	-14	MSE	-	initiating methionine	UNP A0A378K488							
D	-13	ALA	-	expression tag	UNP A0A378K488							
D	-12	SER	-	expression tag	UNP A0A378K488							
D	-11	TRP	-	expression tag	UNP A0A378K488							
D	-10	SER	-	expression tag	UNP A0A378K488							
D	-9	HIS	-	expression tag	UNP A0A378K488							
D	-8	PRO	-	expression tag	UNP A0A378K488							
D	-7	GLN	-	expression tag	UNP A0A378K488							
D	-6	PHE	-	expression tag	UNP A0A378K488							
D	-5	GLU	-	expression tag	UNP A0A378K488							
D	-4	LYS	-	expression tag	UNP A0A378K488							
D	-3	GLY	-	expression tag	UNP A0A378K488							
D	-2	ALA	-	expression tag	UNP A0A378K488							
D	-1	GLY	-	expression tag	UNP A0A378K488							
D	0	THR	-	expression tag	UNP A0A378K488							

Chain	Residue	Modelled	Actual	Comment	Reference
D	203	ASN	ASP	conflict	UNP A0A378K488

• Molecule 2 is NICOTINAMIDE-ADENINE-DINUCLEOTIDE (three-letter code: NAD) (formula: $C_{21}H_{27}N_7O_{14}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Α	Aton	ıs			ZeroOcc	AltConf
0	Δ	1	Total	С	Η	Ν	Ο	Р	0	0
	A	1	70	21	26	7	14	2	0	0
9	Λ	1	Total	С	Η	Ν	Ο	Р	0	0
	A	1	70	21	26	7	14	2	0	0
9	В	1	Total	С	Η	Ν	Ο	Р	0	0
	D	1	70	21	26	7	14	2	0	0
9	В	1	Total	С	Η	Ν	Ο	Р	0	0
	D	1	70	21	26	7	14	2	0	0
9	С	1	Total	С	Η	Ν	Ο	Р	0	0
	U	1	70	21	26	$\overline{7}$	14	2	0	0
2	С	1	Total	С	Η	Ν	Ο	Р	0	0
2	U	T	70	21	26	7	14	2	0	0
2	л	1	Total	С	Η	Ν	Ο	Р	0	0
	D	1	70	21	26	$\overline{7}$	14	2	0	0
2		1	Total	С	Η	Ν	Ο	Р	0	0
2		1	70	21	26	7	14	2	0	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	131	Total O 131 131	0	0
3	В	125	Total O 125 125	0	0
3	С	148	Total O 148 148	0	0
3	D	139	Total O 139 139	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: PlaB phospholipase

K463 K471

• Molecule 1: PlaB phospholipase

	69%	
Chain C:	73%	20% • •
MSE ALA SER SER TRP TRP ALA PLE GLY GLY GLY GLY GLY	V3 V6 H7 H7 H2 810 810 811 112 H112 H113 H113 H123 E19 E19 E19 E28 K29 K29	D33 133 133 133 133 133 133 133 133 140 140 140 140 140 140 141 140 140 141 140 140
A58 R59 A60 A64 A64 A64 A70 B71 K72 K72 K72 K74 C76 D75 C76	RY3 FY9 A80 C31 132 132 132 133 133 133 133 133 133 1	L103 L103 A104 K105 K105 F106 F108 F108 F110 M113 M113 A115 A115 A115 A115 A115 A115 A115 A
L123 L126 Q126 L126 L126 L128 K128 S128 C132 C132 C133 L131 L131 C133 S136 S136 S136 S136	B139 1141 1141 1141 1141 1141 1144 1145 1146 1147 1148 1149 1146 1146 1146 1146 1146 1156 1156 1156 1156 1157 1158 1156 1157 1158 1156 1157 1158 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156	Bit63 11.65 11.65 11.65 11.65 11.65 11.65 11.65 11.71 11.71 11.71 11.71 11.71 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.76 11.77 11.75 11.75 11.76 11.77 11.76 11.77 11.76 11.77 11.78 11.78 11.78 11.81 11.81 11.81 11.81 11.81 11.81 11.81 11.81 11.81 11.81 11.81 </td
K184 R187 Q188 F189 F189 V193 V193 X192 S195 C198 C198 C198 C198 C198 C198	G201 G202 C204 C204 C204 C204 V205 R207 R201 N221 N221 N221 N221 N221 N221 C217 C216 S216 S216 S216 S216 S216 S216 C217 C218 C218 C218 C218 C218 C218 C218 C218	0224 ASP ASN ASN C227 C227 C227 C224 V231 V231 V231 V231 V234 V232 V232 V232 V232 V232 V232 V232
1246 1246 1246 1247 1249 1249 1256 1255 1255 1256 1256 1256 1256	M264 M265 A265 A265 A267 A267 A267 A273 A273 A273 A273 A273 A274 M276 M276 C279 Q281 C279 Q281 C279 Q281 C282 Q281 S285 S285 S287 S287 S287 S287 S287 S287 S287 S287	K1289 K1291 L1291 K1292 K1293 L1295 L1295 L1295 L1295 R1295 R1295 R1295 R1295 R1303
V311 K312 T313 L314 L314 F315 F316 F316 F316 F316 F319 Y320 N323 S326 S326	1328 1329 1329 1329 1333 1333 1333 1333 1333	Past Past 2354 2354 2355 2355 2355 2355 2355 2355

N372 (371) (

M435 M435 T437 T438 W438 W439 W439 W439 W439 W439 W439 W439 W439 W445 M445 R445 P446 P448 P448 P448 P448 P448 P446 P446 P446 P446 P446 P446 P461 P462 P463 P464 P465 P466 P467 P461 P463 P464 P463 P464 P465 P466 P467 P463 P464 P464 P464 P473 P473 P473

• Molecule 1: PlaB phospholipase

		D	-													72'	%																						_			
Chai	n	D	:												7	719	6																23	3%				•	•	-		
							•	• •		•	•	•	•		• •	•	•		•	•	•	• •	•	•	•	• •		•	•		•	• •	•	•	• •		•		•	• •	•	••
MSE ALA SER	SER	SIH	GLN	PHE	TYS	GLY	A-2	1 - 1 1 - 1	Η	12	V3 14	F5	VG	H7	85	S10	V11	T12	H13	114 N15	T16	Y17	G18 F19	L20	P21	Q22	WZ3	N26	q27	K32	L33	D34 T35	036 036	V37	G38 100	I40	Y41	L42	645 R44	Y45 * 46	146 S47	F48 D49
•••	••	• •	•	• •	•	•	• •	• •	•		•	•	•	•	•	•	•	•	• •	•	•	• •	•		•	• •	•	•	• •	•	•		•	•	• •		•	• •	••	• •	•	•
D50 T51 V52	T53 V54	D55	157 157	A58 DE0	A60	F61	D62	ц63 А64	V65	R66	D67	169 I	A70	D71	K72 1 73	R74	D75	G76	077	н/8 F79	A80	C81	182 T83	H84	385	T86	088 0888	P89	190 190	R92	K93	W94 Mgg	D96	L97	Y 98	K100	N101	N102	A104	K105	P107	L108 S109
	~ -=	•		•	•					•			•	•			•	•			•	•			10	•	•	•						•	~	•	•			•		• •
H110 L111 L112	L114	A115	A117	N118	G120	S121	A125	L123 A124	Q12E	L126	G127	S120	R130	L131	G132 P123	1134	K135	S136	F137	F130	G140	I141	E142	G144	K145	C146	W150	L151		D156	M157	S158 1150	0160	L161	N162	W165	L166	D167	D169	C170	A172	N173 G174
4 00 20	ຍ 20 0	•	- 0	თ <mark>5</mark>	• م ع	• •	•		•	•	• •	0 4	م	e v			0	•		0 4	•	• 9	• •	• • ອ	•	•		4	• •	0 ~	•	ი ი		•	••••	4 0			• 0	•	- 0	<u>ლ</u> ჯ
V17 Y17 S17		L18	G18 G18	018 110	118 118	D18	R18	ц18 F18	Y 19	D19	A19	6TN	S19	Y19	T19	E19	S20	G20	S20	07 U	V20	V20	R20 V20	A20	A21	T21	M21	N21	Y21	L21	L21	K21	H22	Q22	E22	022 D22	ASN	GLY	что S22	L23	52V V 23	A23 K23
35 36 37	²	41	43 43	44 15	46	47	48	49 50	51		54		57			67		72	_	0 1	•	78	79 80	81	82			87	88	0 0 0	91	92 92	94	95	96 96	- 86	66	8 2	02	03	05	
M2 R2 R2	TZ	M2	F2	G C	L2 4	P2,	G 2	2 S 2 S	H2		K2	I 2	62		12	A2		T2	:		L2	R2	2 G		V2	ĉ	D2	S2	Y2	X N	L2	V2 K2	E2	L2	D2		T2	K3 73	1 E	03	N3 N3	K3
				• •																																				• •		••
309 310	812 813	314	816 816	317	319 8	320		823 324		328	329	331	332	333	334 235	336	337	338	339	540 341	342	343	344 245	346	347	348	350 850	351	352	354	355	356 857	228	359	360	861 362	363	364 ee	800	367	808	370 371
	2 H	33	> F	Ë	4 H	i X		žž		Ĥ	ΗÈ	2 22	ä	ΗÌ		1	ម	Î	H :	3 12	i ä	Y3		1 ×	3	Ë	G R	B	ë	n n	畄	ör⊲	4 H	i 2	A3	3 E	R	Σč	2 <u>8</u>	8 è	N N	N E
		• •	•	•	•	•	•		•	•	• •	•	•	•		•	•	•	• •		•	• •	• •	•	•	• •		•	•	•	•		•	•	• •		•	• •		• •		••
372 373 374	375 376	377	379 379	380 361	382	383	384	385 386	387	388	389	391 391	392	393	394 305	396	397	398	399	400 401	402	403	404 405	406	407	408	409 410	411	412	413 414	415	416 417	418	419	420	421 422	423	424 405	425 426	427	428 429	430 431
	хц				- ~ L		-	z fi	0	0		s H	Ч	X		5 U	N	-	51			X.	A	- A.	ш	50 0		g	A .	A	Y		- 1			4 H	50 CO	0 3 -	A		H	×н
••••	••	• •		• •	•		• •	•	•		•	•	•	•	•	•		•	•		•	•	•	•	•	•																
L432 H433 P434	N435 E436	T437	4438 M439	V440 5444	1442	M443	L444	u 445	V448	D449	R450	1451 V452	F453	-	N457 N458	L459	-	A462	0000	4400 K467	P468	T469	G470 K471	K472	1473	D474																

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	75.81Å 170.58Å 93.48Å	Deperitor
a, b, c, α , β , γ	90.00° 92.86° 90.00°	Depositor
$\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$	49.24 - 2.30	Depositor
Resolution (A)	49.24 - 2.30	EDS
% Data completeness	99.7 (49.24-2.30)	Depositor
(in resolution range)	99.7(49.24-2.30)	EDS
R _{merge}	0.24	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.85 (at 2.29 \text{\AA})$	Xtriage
Refinement program	PHENIX dev_3922	Depositor
B B.	0.364 , 0.413	Depositor
II, II, <i>free</i>	0.363 , 0.413	DCC
R_{free} test set	5259 reflections (5.01%)	wwPDB-VP
Wilson B-factor $(Å^2)$	27.4	Xtriage
Anisotropy	0.111	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.37, 54.3	EDS
L-test for twinning ²	$< L >=0.51, < L^2>=0.35$	Xtriage
Estimated twinning fraction	0.000 for h,-k,-l	Xtriage
F_o, F_c correlation	0.81	EDS
Total number of atoms	30812	wwPDB-VP
Average B, all atoms $(Å^2)$	40.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 40.38 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 2.7605e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles	
	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.27	0/3858	0.47	0/5192
1	В	0.25	0/3800	0.47	0/5115
1	С	0.26	0/3788	0.45	0/5094
1	D	0.49	2/3807~(0.1%)	0.47	1/5130~(0.0%)
All	All	0.33	2/15253~(0.0%)	0.47	1/20531~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	С	0	1
1	D	0	1
All	All	0	3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	D	424	SER	CB-OG	-23.99	1.11	1.42
1	D	431	ILE	CG1-CD1	-8.62	0.91	1.50

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	D	431	ILE	CB-CG1-CD1	6.52	132.16	113.90

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	423	SER	Peptide
1	С	230	LEU	Peptide
1	D	424	SER	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3750	3694	3662	79	0
1	В	3734	3683	3700	77	0
1	С	3720	3697	3701	75	0
1	D	3743	3688	3689	106	0
2	А	88	52	51	6	0
2	В	88	52	49	1	0
2	С	88	52	50	4	0
2	D	88	52	52	12	0
3	А	131	0	0	15	0
3	В	125	0	0	11	1
3	С	148	0	0	7	0
3	D	139	0	0	11	1
All	All	15842	14970	14954	333	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (333) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:431:ILE:CD1	1:D:431:ILE:CB	2.24	1.14
1:D:431:ILE:CG1	1:D:431:ILE:HD11	1.53	1.05
1:D:431:ILE:CG1	1:D:431:ILE:HD12	1.53	1.02
1:D:431:ILE:CG1	1:D:431:ILE:HD13	1.53	1.02
1:D:431:ILE:CD1	1:D:431:ILE:HG13	1.48	0.99
1:D:431:ILE:CD1	1:D:431:ILE:HG12	1.48	0.98
1:B:352:GLN:NE2	3:B:702:HOH:O	1.98	0.94
1:D:431:ILE:CD1	1:D:431:ILE:CG1	0.91	0.90
1:B:297:ASN:OD1	1:B:300:LYS:NZ	2.03	0.90

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:281:GLN:O	1:B:283:LYS:NZ	2.06	0.88
1:A:142:GLU:OE2	3:A:601:HOH:O	1.94	0.85
1:A:62:ASP:OD2	1:A:66:ARG:NH1	2.11	0.84
1:B:183:GLN:OE1	3:B:701:HOH:O	1.96	0.82
1:D:286:ASP:OD2	3:D:601:HOH:O	1.99	0.81
1:D:472:LYS:NZ	3:D:602:HOH:O	2.16	0.79
1:B:375:LYS:NZ	3:B:706:HOH:O	2.16	0.78
1:A:272:THR:HG22	1:A:276:ILE:HD12	1.65	0.78
1:C:188:GLN:O	3:C:601:HOH:O	2.01	0.78
1:B:421:PHE:HE1	1:B:431:ILE:HD11	1.48	0.77
1:B:449:ASP:OD1	1:B:450:ARG:N	2.17	0.77
1:D:474:ASP:OD1	3:D:602:HOH:O	2.04	0.76
1:B:431:ILE:O	3:B:703:HOH:O	2.05	0.75
1:C:153:LEU:HD22	1:C:327:MSE:HE1	1.66	0.75
1:D:197:THR:O	3:D:603:HOH:O	2.04	0.75
1:A:451:THR:HG23	1:A:469:THR:HG23	1.68	0.75
1:C:35:ILE:HG21	1:C:40:ILE:HD11	1.69	0.74
1:D:417:ARG:NH2	3:D:611:HOH:O	2.21	0.74
1:B:401:ARG:NH1	3:B:708:HOH:O	2.19	0.74
1:C:431:ILE:O	1:C:438:VAL:HG11	1.88	0.74
1:A:348:THR:O	1:A:398:LEU:HD12	1.88	0.73
1:B:383:ASP:OD2	3:B:705:HOH:O	2.06	0.73
1:C:117:ALA:HB3	1:C:151:LEU:HD21	1.69	0.73
1:B:196:TYR:O	3:B:704:HOH:O	2.05	0.73
1:D:424:SER:O	1:D:426:ALA:N	2.22	0.72
1:C:14:THR:HG21	1:C:42:LEU:HD13	1.71	0.72
1:A:59:ARG:NH1	3:A:608:HOH:O	2.22	0.71
1:B:368:ARG:NH2	1:B:373:ARG:O	2.23	0.71
1:C:420:ASP:N	3:C:606:HOH:O	2.23	0.71
1:D:368:ARG:NH1	1:D:373:ARG:O	2.24	0.71
1:D:100:LYS:O	3:D:605:HOH:O	2.09	0.70
1:B:104:ALA:HB2	1:B:173:ASN:OD1	1.90	0.70
1:D:424:SER:OG	1:D:431:ILE:HD13	1.91	0.69
1:B:301:GLU:OE1	1:B:305:ASN:ND2	2.26	0.68
1:A:437:THR:O	3:A:602:HOH:O	2.11	0.68
1:A:408:SER:OG	1:A:417:ARG:NH1	2.27	0.67
1:D:129:SER:OG	3:D:606:HOH:O	2.12	0.67
1:A:128:LYS:HZ2	1:A:142:GLU:HB2	1.59	0.67
1:C:23:TRP:HA	1:C:264:MSE:HE1	1.77	0.67
1:B:143:PRO:HG2	1:B:148:LEU:HD11	1.77	0.67
1:B:431:ILE:HG22	1:B:432:LEU:HG	1.77	0.67

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:338:ASN:OD1	3:A:603:HOH:O	2.13	0.66
1:C:6:VAL:HB	1:C:83:THR:HG22	1.78	0.66
1:A:124:ALA:O	3:A:604:HOH:O	2.14	0.65
1:D:52:VAL:HG11	1:D:57:ILE:HD11	1.79	0.65
1:B:355:GLU:OE2	1:B:356:GLN:NE2	2.30	0.65
1:D:420:ASP:O	3:D:609:HOH:O	2.15	0.65
1:A:410:ASP:OD1	3:A:605:HOH:O	2.15	0.65
1:D:423:SER:OG	1:D:424:SER:N	2.30	0.65
1:B:378:TYR:OH	2:D:502:NAD:N6A	2.21	0.65
1:C:395:GLN:O	3:C:602:HOH:O	2.13	0.64
2:D:501:NAD:O1A	2:D:502:NAD:O3D	2.14	0.64
1:B:328:ILE:HG21	1:B:330:PHE:CZ	2.33	0.64
1:D:162:ASN:OD1	3:D:607:HOH:O	2.15	0.64
1:D:52:VAL:CG1	1:D:57:ILE:HD11	2.28	0.64
1:D:344:ASP:OD2	1:D:403:LYS:NZ	2.31	0.64
1:A:327:MSE:HB3	1:A:437:THR:HG22	1.80	0.63
1:A:451:THR:HG21	1:A:467:LYS:O	1.97	0.63
1:B:358:LEU:HD23	1:B:362:PHE:CD2	2.34	0.63
1:A:332:LEU:HG	1:A:340:LEU:HD12	1.81	0.62
1:A:356:GLN:NE2	3:A:614:HOH:O	2.32	0.62
1:D:6:VAL:CG1	1:D:83:THR:HG22	2.30	0.62
1:C:35:ILE:HG21	1:C:40:ILE:CD1	2.30	0.61
1:A:348:THR:HB	1:A:353:TYR:HB3	1.82	0.61
1:D:407:GLU:OE2	3:D:610:HOH:O	2.16	0.61
1:A:451:THR:CG2	1:A:469:THR:HG23	2.31	0.61
1:B:208:VAL:O	1:B:211:THR:OG1	2.14	0.61
1:C:450:ARG:NE	1:C:472:LYS:O	2.34	0.61
1:C:42:LEU:HD11	1:D:459:LEU:HA	1.82	0.60
1:A:411:GLN:OE1	3:A:605:HOH:O	2.15	0.60
1:A:421:PHE:HE2	1:A:431:ILE:HD11	1.67	0.60
1:A:313:THR:HG23	1:A:316:PHE:H	1.67	0.60
1:C:380:LEU:HD13	1:C:385:MSE:HE2	1.82	0.60
1:A:128:LYS:NZ	1:A:142:GLU:HB2	2.15	0.59
1:D:89:PRO:HB3	1:D:150:TRP:CH2	2.36	0.59
1:C:341:ILE:O	1:C:368:ARG:NH1	2.36	0.59
1:A:331:ARG:NH2	3:A:615:HOH:O	2.33	0.59
1:B:223:GLU:N	1:B:230:LEU:O	2.35	0.59
1:D:195:SER:OG	2:D:502:NAD:H4N	2.02	0.59
1:A:250:SER:OG	1:A:251:HIS:N	2.35	0.59
1:A:294:GLU:OE2	3:A:606:HOH:O	2.17	0.59
1:C:71:ASP:N	1:C:71:ASP:OD1	2.35	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:298:ILE:O	1:B:302:THR:HG23	2.02	0.58
1:B:451:THR:OG1	1:B:469:THR:HG23	2.03	0.58
1:C:95:MSE:HE3	1:C:165:TRP:CZ2	2.38	0.58
1:D:128:LYS:HD2	1:D:142:GLU:HB3	1.86	0.58
1:C:66:ARG:NH2	3:C:613:HOH:O	2.37	0.57
1:A:209:ALA:O	1:A:437:THR:HG23	2.03	0.57
1:D:450:ARG:NE	1:D:472:LYS:O	2.37	0.57
1:D:6:VAL:HG12	1:D:83:THR:HG22	1.86	0.57
1:C:195:SER:OG	2:C:501:NAD:H4N	2.04	0.57
1:C:207:ARG:NH1	1:C:327:MSE:HE3	2.19	0.57
1:C:207:ARG:HH11	1:C:327:MSE:HE3	1.69	0.56
1:C:213:MSE:O	3:C:604:HOH:O	2.17	0.56
1:C:327:MSE:HE2	1:C:377:THR:CG2	2.35	0.56
1:A:391:THR:HB	1:A:392:PRO:CD	2.35	0.56
1:D:450:ARG:HG3	1:D:473:ILE:HG22	1.87	0.56
1:A:-1:GLY:O	1:A:0:THR:CB	2.54	0.56
1:C:450:ARG:HE	1:C:472:LYS:C	2.09	0.56
1:D:355:GLU:OE2	1:D:401:ARG:NH1	2.39	0.55
1:B:335:ASP:OD1	1:B:335:ASP:N	2.40	0.55
1:A:113:MSE:HB3	1:A:116:PRO:HG3	1.88	0.55
1:A:419:LEU:HD23	1:A:420:ASP:N	2.22	0.55
1:C:123:LEU:HB3	1:C:131:LEU:HD21	1.87	0.55
1:A:184:LYS:HD3	1:A:256:ILE:HD13	1.89	0.55
1:B:114:LEU:HD21	1:B:276:ILE:HD11	1.89	0.55
1:D:332:LEU:HD13	1:D:343:TYR:CZ	2.42	0.55
1:C:85:SER:OG	1:C:86:THR:N	2.40	0.55
1:A:275:TRP:CZ2	1:A:298:ILE:HG13	2.41	0.54
1:A:342:ASP:OD2	1:A:405:TYR:HB2	2.08	0.54
1:D:218:LEU:HD21	1:D:220:LEU:HD21	1.89	0.54
1:D:272:THR:HG22	1:D:276:ILE:HD12	1.89	0.54
1:D:423:SER:O	1:D:424:SER:HB2	2.07	0.54
1:C:222:GLN:HB2	1:C:419:LEU:HD12	1.89	0.54
1:D:402:VAL:HG12	1:D:419:LEU:HB3	1.90	0.53
1:B:436:GLU:OE1	3:B:707:HOH:O	2.18	0.53
1:B:111:LEU:HD21	1:B:113:MSE:HE2	1.91	0.53
1:C:409:SER:OG	1:C:412:ALA:N	2.41	0.53
1:A:450:ARG:NH2	3:A:625:HOH:O	2.39	0.53
1:B:418:LEU:HD21	3:B:722:HOH:O	2.08	0.53
1:C:417:ARG:NH2	1:C:418:LEU:HB3	2.23	0.53
1:B:85:SER:OG	1:B:86:THR:N	2.42	0.53
1:C:95:MSE:HE3	1:C:165:TRP:HZ2	1.74	0.53

Atom 1 Atom 2		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:403:LYS:HD2	1:A:418:LEU:HD11	1.91	0.52
1:C:213:MSE:HE3	1:C:215:TYR:CE1	2.44	0.52
1:D:420:ASP:OD1	1:D:422:HIS:NE2	2.41	0.52
1:D:353:TYR:CZ	1:D:422:HIS:HB3	2.43	0.52
1:A:421:PHE:CE2	1:A:431:ILE:HD11	2.45	0.52
1:D:278:ARG:NH2	1:D:294:GLU:OE1	2.42	0.52
1:D:-1:GLY:O	1:D:0:THR:CB	2.57	0.52
1:B:326:SER:HB3	1:B:432:LEU:HD22	1.92	0.51
1:C:54:VAL:HG13	1:C:90:ILE:HD13	1.92	0.51
1:D:196:TYR:CE1	2:D:502:NAD:C2N	2.94	0.51
1:A:391:THR:HB	1:A:392:PRO:HD2	1.93	0.51
1:B:394:MSE:HE2	1:D:315:VAL:HG12	1.93	0.51
1:C:313:THR:HG22	1:C:315:VAL:H	1.76	0.51
1:B:385:MSE:O	1:B:389:ILE:HD13	2.11	0.51
1:C:218:LEU:HD21	1:C:220:LEU:HG	1.93	0.51
1:A:195:SER:OG	2:A:501:NAD:H4N	2.11	0.50
1:D:406:PRO:HG2	1:D:414:ALA:O	2.12	0.50
1:A:128:LYS:HZ2	1:A:142:GLU:CB	2.24	0.50
1:C:93:LYS:NZ	3:C:608:HOH:O	2.29	0.50
1:C:217:LEU:HD13	1:C:439:MSE:HB2	1.93	0.50
1:C:349:ALA:O	1:C:354:SER:N	2.44	0.49
1:B:421:PHE:CZ	1:B:423:SER:HB2	2.47	0.49
1:A:24:LEU:HD12	1:A:33:LEU:HD13	1.94	0.49
1:B:195:SER:HB2	2:D:501:NAD:H4N	1.94	0.49
1:C:162:ASN:CB	1:C:439:MSE:HE1	2.43	0.49
1:C:348:THR:O	1:C:398:LEU:HD12	2.12	0.49
1:D:73:LEU:HD23	1:D:77:GLN:O	2.13	0.49
1:C:228:GLU:O	1:C:229:SER:HB3	2.13	0.49
1:A:150:TRP:HA	1:A:157:MSE:HE3	1.95	0.49
1:D:242:ALA:HB1	1:D:295:LEU:HD12	1.94	0.49
1:D:332:LEU:CD2	1:D:402:VAL:HG21	2.43	0.48
1:A:237:ARG:NH2	1:A:436:GLU:OE2	2.46	0.48
1:D:344:ASP:HB2	1:D:403:LYS:NZ	2.27	0.48
1:D:91:VAL:O	1:D:95:MSE:HG3	2.13	0.48
1:A:331:ARG:NH1	3:A:632:HOH:O	2.46	0.48
1:A:403:LYS:NZ	1:A:407:GLU:OE1	2.46	0.48
1:A:345:LEU:HD12	1:A:402:VAL:HG12	1.96	0.48
1:B:358:LEU:HD23	1:B:362:PHE:CE2	2.48	0.48
1:D:189:PHE:CD1	1:D:189:PHE:N	2.81	0.48
1:D:344:ASP:HA	2:D:501:NAD:H2A	1.95	0.48
2:A:502:NAD:O3B	1:C:366:ARG:NH1	2.46	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:386:GLU:HA	1:D:425:LEU:HD23	1.96	0.48
1:D:431:ILE:HD12	1:D:431:ILE:N	2.29	0.48
1:B:278:ARG:HD2	1:B:281:GLN:NE2	2.29	0.48
1:B:335:ASP:HB3	1:B:443:MSE:HE3	1.96	0.48
1:C:446:ARG:NH1	1:D:56:ASP:OD2	2.46	0.48
1:D:229:SER:C	1:D:230:LEU:HD23	2.35	0.48
1:B:149:ASP:HB3	1:B:157:MSE:HE1	1.96	0.47
1:C:450:ARG:HB2	1:C:469:THR:HG21	1.96	0.47
1:A:123:LEU:HD22	1:A:126:LEU:HD12	1.96	0.47
1:B:224:GLY:O	1:B:227:GLY:N	2.46	0.47
1:C:170:CYS:HB3	1:C:175:VAL:HB	1.95	0.47
1:D:344:ASP:HB2	1:D:403:LYS:HZ2	1.78	0.47
1:B:368:ARG:HD3	2:D:502:NAD:O4B	2.14	0.47
1:B:138:PHE:O	1:B:139:GLU:CB	2.62	0.47
1:C:330:PHE:CE1	1:C:345:LEU:HD21	2.49	0.47
1:B:290:LYS:HD3	1:B:294:GLU:OE1	2.15	0.47
1:A:355:GLU:O	2:C:502:NAD:N6A	2.44	0.47
1:C:54:VAL:HG13	1:C:90:ILE:CD1	2.44	0.47
1:C:123:LEU:HD12	1:C:205:VAL:HG13	1.97	0.47
1:D:220:LEU:HD12	1:D:442:ILE:HD13	1.96	0.47
1:D:366:ARG:NH2	2:D:501:NAD:O1N	2.47	0.47
1:A:24:LEU:HD12	1:A:33:LEU:CD1	2.45	0.47
1:D:85:SER:OG	1:D:86:THR:N	2.47	0.47
2:A:501:NAD:O1A	2:C:501:NAD:O3D	2.24	0.47
1:B:401:ARG:NH1	3:B:722:HOH:O	2.48	0.46
1:B:128:LYS:HD2	1:B:141:ILE:HG23	1.96	0.46
1:C:143:PRO:HG2	1:C:148:LEU:HD11	1.97	0.46
1:C:420:ASP:OD1	1:C:422:HIS:CE1	2.68	0.46
1:C:92:ARG:NH2	1:C:162:ASN:OD1	2.48	0.46
1:C:450:ARG:NH2	1:C:472:LYS:O	2.48	0.46
1:C:213:MSE:HE3	1:C:215:TYR:HE1	1.81	0.46
1:C:449:ASP:OD1	1:C:469:THR:HG22	2.15	0.46
1:D:9:TRP:HZ2	1:D:131:LEU:HD11	1.81	0.46
1:D:50:ASP:OD1	1:D:145:LYS:N	2.42	0.46
1:D:212:ASN:HD21	1:D:214:ASN:HB2	1.79	0.46
1:D:389:ILE:HA	1:D:394:MSE:HG2	1.97	0.46
1:C:3:VAL:HB	1:C:40:ILE:HD12	1.97	0.46
1:A:417:ARG:NH2	1:A:418:LEU:HD13	2.31	0.46
1:B:328:ILE:O	1:B:377:THR:HA	2.16	0.46
1:A:358:LEU:HD23	1:A:362:PHE:CD2	2.50	0.46
1:A:402:VAL:HG22	1:A:419:LEU:HB3	1.97	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:205:VAL:O	3:A:607:HOH:O	2.21	0.46
1:B:288:TYR:O	1:B:292:VAL:HG23	2.15	0.46
1:D:288:TYR:O	1:D:292:VAL:HG13	2.16	0.46
1:C:462:ALA:N	1:D:14:THR:OG1	2.44	0.45
1:D:160:GLN:OE1	1:D:160:GLN:HA	2.16	0.45
1:D:350:GLY:HA3	1:D:394:MSE:HE3	1.97	0.45
2:C:501:NAD:O5D	2:C:501:NAD:H2N	2.17	0.45
1:B:313:THR:HG22	1:B:314:LEU:N	2.32	0.45
1:D:401:ARG:HG3	1:D:418:LEU:HD11	1.98	0.45
1:B:180:LEU:HD22	1:B:246:LEU:HD21	1.97	0.45
1:D:166:LEU:HA	1:D:238:THR:HG22	1.99	0.45
1:B:86:THR:HG22	1:B:90:ILE:HG13	1.98	0.45
1:B:89:PRO:HB3	1:B:150:TRP:CH2	2.52	0.45
1:D:73:LEU:HD22	1:D:107:PRO:HB2	1.99	0.45
1:D:166:LEU:HD21	1:D:217:LEU:HB3	1.98	0.45
1:A:328:ILE:HD11	1:A:380:LEU:HD11	1.99	0.45
2:A:501:NAD:H2N	2:A:501:NAD:O5D	2.16	0.45
1:D:57:ILE:HG21	1:D:90:ILE:HD13	1.99	0.45
1:D:114:LEU:O	1:D:180:LEU:O	2.34	0.44
1:D:131:LEU:HD23	1:D:143:PRO:HG3	1.98	0.44
1:B:334:ASP:OD2	1:B:416:TYR:OH	2.30	0.44
1:D:156:ASP:O	1:D:160:GLN:HG2	2.17	0.44
1:A:85:SER:OG	1:A:86:THR:N	2.50	0.44
1:A:153:LEU:HD13	1:A:377:THR:HG21	2.00	0.44
1:B:355:GLU:O	2:B:602:NAD:N6A	2.47	0.44
1:D:9:TRP:CE3	1:D:143:PRO:HB3	2.52	0.44
1:D:130:ARG:NH2	1:D:194:ASN:OD1	2.46	0.44
1:C:113:MSE:HB3	1:C:116:PRO:HG3	2.00	0.44
1:D:131:LEU:CD2	1:D:143:PRO:HG3	2.47	0.44
1:D:366:ARG:NE	2:D:501:NAD:O2A	2.49	0.44
1:A:23:TRP:HA	1:A:264:MSE:HE1	1.99	0.44
1:A:219:LYS:O	1:A:219:LYS:HG3	2.18	0.44
1:C:288:TYR:O	1:C:292:VAL:HG23	2.17	0.44
1:D:95:MSE:SE	1:D:165:TRP:HH2	2.50	0.44
2:D:502:NAD:O5D	2:D:502:NAD:H2N	2.17	0.44
1:A:334:ASP:OD2	1:A:416:TYR:OH	2.34	0.44
1:B:245:VAL:O	1:B:302:THR:HG21	2.17	0.44
1:C:117:ALA:CB	1:C:151:LEU:HD21	2.43	0.44
1:B:128:LYS:CD	1:B:141:ILE:HG23	2.48	0.44
1:C:142:GLU:HB2	1:C:143:PRO:HD3	1.99	0.44
1:D:217:LEU:C	1:D:217:LEU:HD13	2.38	0.44

A + a 1	A tom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:113:MSE:HE3	1:D:179:VAL:HG22	1.99	0.44
1:A:192:ALA:HB3	1:C:346:TYR:HE1	1.82	0.43
1:A:270:HIS:HD2	1:A:272:THR:H	1.64	0.43
1:B:55:ASP:O	1:B:59:ARG:HG3	2.18	0.43
1:B:179:VAL:HG23	1:B:241:MSE:SE	2.68	0.43
1:C:345:LEU:HD12	1:C:402:VAL:HG12	1.99	0.43
1:A:20:LEU:HD21	1:A:276:ILE:HD13	2.00	0.43
1:A:401:ARG:NH1	3:A:634:HOH:O	2.50	0.43
1:B:419:LEU:HD13	1:B:444:LEU:CD2	2.48	0.43
1:B:450:ARG:HG3	1:B:473:ILE:HG22	1.99	0.43
1:C:145:LYS:NZ	3:C:603:HOH:O	2.17	0.43
1:D:9:TRP:CE3	1:D:10:SER:N	2.87	0.43
1:D:424:SER:HB3	1:D:425:LEU:H	1.50	0.43
1:B:81:CYS:HB2	1:B:108:LEU:HD11	2.00	0.43
1:C:380:LEU:HD13	1:C:385:MSE:CE	2.48	0.43
1:A:362:PHE:HD2	1:A:380:LEU:HD22	1.83	0.43
1:B:362:PHE:HB2	1:B:385:MSE:HG3	2.00	0.43
1:C:92:ARG:HA	1:C:95:MSE:HE2	2.01	0.43
1:A:345:LEU:CD1	1:A:402:VAL:HG12	2.48	0.42
1:D:185:ILE:HD12	1:D:198:GLY:HA2	2.01	0.42
1:D:161:LEU:HD11	1:D:165:TRP:HE1	1.84	0.42
1:D:366:ARG:NE	2:D:501:NAD:H8A	2.35	0.42
1:A:419:LEU:HD13	1:A:442:ILE:HG21	2.02	0.42
1:A:246:LEU:HB2	1:A:249:LEU:HD12	2.02	0.42
1:A:313:THR:HG23	1:A:316:PHE:N	2.32	0.42
1:A:362:PHE:CD2	1:A:380:LEU:HD22	2.54	0.42
1:A:400:PHE:CZ	1:A:431:ILE:HD13	2.54	0.42
1:C:162:ASN:HB2	1:C:439:MSE:HE1	2.01	0.42
1:D:353:TYR:CE2	1:D:397:ASN:HB3	2.55	0.42
1:D:426:ALA:HB1	1:D:428:ILE:HD12	2.02	0.42
1:A:14:THR:HG1	1:B:462:ALA:H	1.63	0.42
1:B:326:SER:OG	1:B:433:HIS:O	2.37	0.42
1:A:44:ARG:HB2	1:B:464:ILE:HG23	2.00	0.42
1:B:71:ASP:OD1	1:B:71:ASP:N	2.52	0.42
1:D:128:LYS:CD	1:D:142:GLU:HB3	2.48	0.42
1:A:132:GLY:HA3	1:A:142:GLU:HG2	2.02	0.42
1:B:376:LEU:HD21	2:D:502:NAD:C5A	2.50	0.42
1:D:217:LEU:HD11	1:D:219:LYS:HE2	2.01	0.42
1:D:422:HIS:O	1:D:423:SER:HB2	2.19	0.42
1:D:234:LYS:N	3:D:632:HOH:O	2.52	0.42
1:A:208:VAL:O	1:A:211:THR:OG1	2.34	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:192:ALA:HB3	1:D:346:TYR:CE2	2.55	0.42
1:D:332:LEU:HD21	1:D:402:VAL:HG21	2.01	0.42
1:C:163:GLU:HA	1:C:166:LEU:HD12	2.01	0.41
1:A:420:ASP:HB3	1:A:422:HIS:CE1	2.55	0.41
1:C:314:LEU:HD12	1:C:314:LEU:H	1.85	0.41
1:A:54:VAL:HG13	1:A:90:ILE:HD13	2.01	0.41
2:A:502:NAD:N6A	1:C:355:GLU:O	2.54	0.41
1:C:291:LEU:HD13	1:C:295:LEU:HG	2.02	0.41
2:A:502:NAD:H5N	3:A:635:HOH:O	2.21	0.41
1:B:312:LYS:HE2	1:B:317:THR:HG23	2.02	0.41
1:C:199:GLU:OE1	1:C:207:ARG:NE	2.48	0.41
1:D:86:THR:CG2	1:D:151:LEU:HD11	2.50	0.41
1:D:378:TYR:HD2	1:D:380:LEU:HD21	1.85	0.41
1:C:223:GLU:O	1:C:230:LEU:HA	2.21	0.41
1:B:466:GLY:O	1:B:468:PRO:HD3	2.20	0.41
1:C:403:LYS:CB	1:C:418:LEU:HD12	2.51	0.41
1:D:389:ILE:HG22	1:D:396:GLY:HA2	2.03	0.41
1:B:142:GLU:HB2	1:B:143:PRO:HD3	2.02	0.41
1:B:346:TYR:CE1	1:D:193:VAL:HG23	2.56	0.41
1:D:217:LEU:HD11	1:D:219:LYS:HG3	2.03	0.41
1:B:66:ARG:O	1:B:70:ALA:HB2	2.21	0.41
1:B:307:HIS:NE2	1:B:323:ASN:OD1	2.54	0.41
1:D:179:VAL:HG23	1:D:241:MSE:SE	2.71	0.41
1:D:430:LYS:HE2	1:D:433:HIS:ND1	2.35	0.41
1:A:51:THR:HG21	1:B:406:PRO:HG2	2.03	0.40
1:D:184:LYS:HD3	1:D:256:ILE:CD1	2.51	0.40
1:B:357:ALA:HB2	3:B:702:HOH:O	2.22	0.40
1:C:285[A]:ARG:HD3	1:C:285[A]:ARG:H	1.87	0.40
1:D:332:LEU:HD22	1:D:343:TYR:CD2	2.57	0.40
1:D:162:ASN:CB	1:D:439:MSE:HE1	2.51	0.40
1:A:405:TYR:HB3	1:A:406:PRO:HA	2.03	0.40
1:B:403:LYS:NZ	1:B:407:GLU:OE2	2.52	0.40
1:C:291:LEU:O	1:C:295:LEU:HG	2.21	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:B:790:HOH:O	3:D:652:HOH:O[1_655]	2.15	0.05

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	471/489~(96%)	445 (94%)	22~(5%)	4 (1%)	16	20
1	В	467/489~(96%)	434 (93%)	27~(6%)	6 (1%)	10	11
1	С	461/489~(94%)	437~(95%)	18 (4%)	6 (1%)	10	11
1	D	470/489~(96%)	439~(93%)	25~(5%)	6 (1%)	10	11
All	All	1869/1956~(96%)	1755 (94%)	92 (5%)	22 (1%)	11	12

All (22) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	0	THR
1	А	412	ALA
1	В	139	GLU
1	В	229	SER
1	С	138	PHE
1	D	424	SER
1	D	425	LEU
1	В	142	GLU
1	D	0	THR
1	А	424	SER
1	В	138	PHE
1	В	230	LEU
1	С	78	ARG
1	С	139	GLU
1	С	142	GLU
1	С	230	LEU
1	D	-1	GLY
1	D	404	ALA
1	D	423	SER
1	А	351	PRO
1	В	78	ARG
1	С	141	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	407/408~(100%)	385~(95%)	22~(5%)	18 27
1	В	403/408~(99%)	385~(96%)	18 (4%)	23 34
1	С	402/408~(98%)	374 (93%)	28 (7%)	12 17
1	D	401/408 (98%)	382~(95%)	19 (5%)	22 32
All	All	1613/1632~(99%)	1526~(95%)	87 (5%)	19 27

All (87) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	9	TRP
1	А	106	CYS
1	А	129	SER
1	А	130	ARG
1	А	216	SER
1	А	293	LYS
1	А	296	ASP
1	А	304	LYS
1	А	305	ASN
1	А	308	LYS
1	А	310	PHE
1	А	313	THR
1	А	336	ARG
1	А	353	TYR
1	А	383	ASP
1	А	417	ARG
1	А	424	SER
1	А	438	VAL
1	А	441	GLU
1	А	453	PHE
1	A	471	LYS
1	A	472	LYS
1	В	25	GLU
1	В	32	LYS

Mol	Chain	Res	Type
1	В	81	CYS
1	В	123	LEU
1	В	128	LYS
1	В	145	LYS
1	В	200	SER
1	В	225	ASP
1	В	276	ILE
1	В	285[A]	ARG
1	В	285[B]	ARG
1	В	290	LYS
1	В	326	SER
1	В	366	ARG
1	В	373	ARG
1	В	395	GLN
1	В	419	LEU
1	В	453	PHE
1	С	9	TRP
1	С	36	GLN
1	С	95	MSE
1	С	105	LYS
1	С	138	PHE
1	С	151	LEU
1	С	158	SER
1	С	206	VAL
1	С	213	MSE
1	С	216	SER
1	С	234	LYS
1	С	264	MSE
1	С	285[A]	ARG
1	С	285[B]	ARG
1	С	286	ASP
1	С	362	PHE
1	С	366	ARG
1	С	367	GLN
1	C	402	VAL
1	C	417	ARG
1	C	419	LEU
1	С	420	ASP
1	C	424	SER
1	С	450	ARG
1	С	453	PHE
1	C	463[A]	LYS

Mol	Chain	Res	Type
1	С	463[B]	LYS
1	С	471	LYS
1	D	10	SER
1	D	32	LYS
1	D	40	ILE
1	D	81	CYS
1	D	121	SER
1	D	128	LYS
1	D	202	SER
1	D	304	LYS
1	D	338	ASN
1	D	344	ASP
1	D	355	GLU
1	D	373	ARG
1	D	394	MSE
1	D	411	GLN
1	D	424	SER
1	D	427	ASP
1	D	450	ARG
1	D	453	PHE
1	D	472	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	30	GLN
1	А	270	HIS
1	А	356	GLN
1	В	281	GLN
1	С	305	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

8 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chain		Deg Link		B	Bond lengths			Bond angles		
IVIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
2	NAD	С	501	-	42,48,48	4.73	19 (45%)	50,73,73	1.77	6 (12%)	
2	NAD	А	501	-	42,48,48	4.72	19 (45%)	50,73,73	1.81	10 (20%)	
2	NAD	D	501	-	42,48,48	4.70	19 (45%)	50,73,73	1.76	7 (14%)	
2	NAD	В	601	-	42,48,48	4.85	19 (45%)	50,73,73	1.76	10 (20%)	
2	NAD	С	502	-	42,48,48	5.04	19 (45%)	50,73,73	1.82	9 (18%)	
2	NAD	D	502	-	42,48,48	4.71	19 (45%)	50,73,73	1.82	11 (22%)	
2	NAD	А	502	-	42,48,48	<mark>5.05</mark>	19 (45%)	50,73,73	1.80	10 (20%)	
2	NAD	В	602	-	42,48,48	4.83	19 (45%)	50,73,73	1.75	9 (18%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAD	С	501	-	-	3/26/62/62	0/5/5/5
2	NAD	А	501	-	-	5/26/62/62	0/5/5/5
2	NAD	D	501	-	-	2/26/62/62	0/5/5/5
2	NAD	В	601	-	-	4/26/62/62	0/5/5/5
2	NAD	С	502	-	-	6/26/62/62	0/5/5/5
2	NAD	D	502	-	-	3/26/62/62	0/5/5/5
2	NAD	А	502	-	-	4/26/62/62	0/5/5/5
2	NAD	В	602	-	-	2/26/62/62	0/5/5/5

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	С	502	NAD	C2B-C1B	-18.51	1.25	1.53
2	А	502	NAD	C2B-C1B	-18.32	1.26	1.53
2	В	601	NAD	C2B-C1B	-17.30	1.27	1.53
2	В	602	NAD	C2B-C1B	-17.15	1.27	1.53
2	С	501	NAD	C2B-C1B	-16.37	1.28	1.53
2	А	501	NAD	C2B-C1B	-16.23	1.29	1.53
2	D	501	NAD	C2B-C1B	-16.18	1.29	1.53
2	D	502	NAD	C2B-C1B	-16.15	1.29	1.53
2	А	502	NAD	O4B-C1B	12.52	1.58	1.41
2	С	502	NAD	O4B-C1B	12.32	1.58	1.41
2	С	502	NAD	C2D-C3D	-10.63	1.24	1.53
2	С	501	NAD	C2D-C3D	-10.60	1.24	1.53
2	D	502	NAD	C2D-C3D	-10.58	1.24	1.53
2	В	602	NAD	C2D-C3D	-10.56	1.24	1.53
2	D	501	NAD	C2D-C3D	-10.55	1.24	1.53
2	В	601	NAD	O4B-C1B	10.55	1.55	1.41
2	А	501	NAD	C2D-C3D	-10.54	1.24	1.53
2	В	601	NAD	C2D-C3D	-10.47	1.24	1.53
2	В	602	NAD	O4B-C1B	10.46	1.55	1.41
2	А	502	NAD	C2D-C3D	-10.46	1.24	1.53
2	D	502	NAD	C3B-C4B	-10.27	1.26	1.53
2	В	602	NAD	C3B-C4B	-10.25	1.26	1.53
2	С	502	NAD	C3B-C4B	-10.22	1.26	1.53
2	А	502	NAD	C3B-C4B	-10.20	1.26	1.53
2	С	501	NAD	C3B-C4B	-10.19	1.27	1.53
2	D	501	NAD	C3B-C4B	-10.16	1.27	1.53
2	В	601	NAD	C3B-C4B	-10.15	1.27	1.53
2	А	501	NAD	C3B-C4B	-10.13	1.27	1.53
2	С	501	NAD	O4B-C1B	9.98	1.55	1.41
2	А	501	NAD	O4B-C1B	9.96	1.55	1.41
2	D	501	NAD	O4B-C1B	9.68	1.54	1.41
2	D	502	NAD	O4B-C1B	9.60	1.54	1.41
2	С	502	NAD	C7N-N7N	7.96	1.48	1.33
2	А	502	NAD	C7N-N7N	7.91	1.48	1.33
2	D	502	NAD	O4D-C1D	7.90	1.52	1.41
2	В	601	NAD	C7N-N7N	7.89	1.48	1.33
2	В	602	NAD	C7N-N7N	7.85	1.48	1.33
2	D	502	NAD	C7N-N7N	7.84	1.47	1.33
2	С	501	NAD	C7N-N7N	7.84	1.47	1.33
2	A	501	NAD	C7N-N7N	7.84	1.47	1.33
2	D	501	NAD	C7N-N7N	7.81	1.47	1.33
2	A	502	NAD	O4D-C1D	7.54	1.51	1.41

All (152) bond length outliers are listed below:

Mol	Chain	Res	Tvpe	Atoms	Z	Observed(Å)	Ideal(Å)
2	D	501	NAD	04D-C1D	752	1 51	1 41
2	B	601	NAD	$0.12 \ 0.12$	7 40	1.51	1 41
2	C	501	NAD	04D-C1D	7.40	1.51	1.41
2	A	501	NAD	04D-C1D	7.36	1.51	1.41
2	B	602	NAD	04D-C1D	7.32	1.51	1.41
2	C	502	NAD	04D-C1D	7.21	1.51	1.41
2	A	502	NAD	04D-C4D	-6.50	1.30	1.45
2	В	602	NAD	O4D-C4D	-6.50	1.30	1.45
2	В	601	NAD	O4D-C4D	-6.45	1.30	1.45
2	С	502	NAD	O4D-C4D	-6.45	1.30	1.45
2	C	501	NAD	O4D-C4D	-6.38	1.30	1.45
2	D	502	NAD	O4D-C4D	-6.33	1.30	1.45
2	A	501	NAD	O4D-C4D	-6.32	1.30	1.45
2	D	501	NAD	O4D-C4D	-6.26	1.31	1.45
2	А	501	NAD	C3D-C4D	5.21	1.66	1.53
2	D	501	NAD	C3D-C4D	5.19	1.66	1.53
2	А	502	NAD	O4B-C4B	5.16	1.56	1.45
2	С	502	NAD	C3D-C4D	5.14	1.66	1.53
2	А	501	NAD	O4B-C4B	5.12	1.56	1.45
2	D	501	NAD	O4B-C4B	5.12	1.56	1.45
2	D	502	NAD	C3D-C4D	5.12	1.66	1.53
2	В	601	NAD	C3D-C4D	5.11	1.66	1.53
2	В	601	NAD	O4B-C4B	5.10	1.56	1.45
2	С	501	NAD	C3D-C4D	5.10	1.66	1.53
2	В	601	NAD	C2B-C3B	5.09	1.67	1.53
2	D	502	NAD	O4B-C4B	5.09	1.56	1.45
2	А	502	NAD	C3D-C4D	5.09	1.66	1.53
2	В	602	NAD	O4B-C4B	5.08	1.56	1.45
2	В	602	NAD	C3D-C4D	5.07	1.65	1.53
2	С	501	NAD	O4B-C4B	5.04	1.56	1.45
2	С	501	NAD	C2B-C3B	5.03	1.67	1.53
2	С	502	NAD	O4B-C4B	5.03	1.56	1.45
2	В	602	NAD	C2B-C3B	5.03	1.67	1.53
2	А	502	NAD	C2B-C3B	5.01	1.67	1.53
2	С	502	NAD	C2B-C3B	5.00	1.67	1.53
2	A	501	NAD	C2B-C3B	4.98	1.67	1.53
2	D	501	NAD	C2B-C3B	4.96	1.66	1.53
2	D	502	NAD	C2B-C3B	4.84	1.66	1.53
2	A	501	NAD	C3N-C7N	4.18	1.56	1.50
2	D	502	NAD	C3N-C7N	4.12	1.56	1.50
2	С	501	NAD	C3N-C7N	4.08	1.56	1.50
2	D	501	NAD	C3N-C7N	4.06	1.56	1.50

Conti	nued fron	i previ	ous page	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
2	В	601	NAD	C3N-C7N	4.05	1.56	1.50
2	D	501	NAD	C2D-C1D	4.01	1.59	1.53
2	С	502	NAD	O2D-C2D	4.00	1.52	1.43
2	В	601	NAD	C2D-C1D	4.00	1.59	1.53
2	В	601	NAD	O2D-C2D	4.00	1.52	1.43
2	В	602	NAD	C2D-C1D	3.99	1.59	1.53
2	А	501	NAD	C2D-C1D	3.99	1.59	1.53
2	А	502	NAD	C2D-C1D	3.97	1.59	1.53
2	А	502	NAD	O2D-C2D	3.97	1.52	1.43
2	С	502	NAD	C2D-C1D	3.95	1.59	1.53
2	С	501	NAD	C6A-N6A	3.94	1.48	1.34
2	А	502	NAD	C3N-C7N	3.94	1.56	1.50
2	С	502	NAD	C6A-N6A	3.92	1.48	1.34
2	В	602	NAD	C3N-C7N	3.92	1.56	1.50
2	D	502	NAD	C6A-N6A	3.91	1.48	1.34
2	В	602	NAD	O2D-C2D	3.90	1.52	1.43
2	А	502	NAD	C6A-N6A	3.89	1.48	1.34
2	В	602	NAD	C6A-N6A	3.88	1.48	1.34
2	В	601	NAD	C6A-N6A	3.88	1.48	1.34
2	D	502	NAD	O2D-C2D	3.88	1.52	1.43
2	D	501	NAD	C6A-N6A	3.88	1.48	1.34
2	А	501	NAD	C6A-N6A	3.87	1.48	1.34
2	С	502	NAD	C3N-C7N	3.86	1.56	1.50
2	С	501	NAD	O2D-C2D	3.84	1.52	1.43
2	А	501	NAD	O2D-C2D	3.82	1.52	1.43
2	С	501	NAD	C2D-C1D	3.79	1.59	1.53
2	D	501	NAD	O2D-C2D	3.74	1.51	1.43
2	D	502	NAD	C2D-C1D	3.49	1.59	1.53
2	А	502	NAD	O7N-C7N	-3.21	1.18	1.24
2	С	502	NAD	O7N-C7N	-3.20	1.18	1.24
2	В	601	NAD	O7N-C7N	-3.19	1.18	1.24
2	В	602	NAD	O7N-C7N	-3.13	1.18	1.24
2	С	501	NAD	O7N-C7N	-3.13	1.18	1.24
2	А	501	NAD	O7N-C7N	-3.12	1.18	1.24
2	D	501	NAD	O7N-C7N	-3.10	1.18	1.24
2	D	502	NAD	O7N-C7N	-3.08	1.18	1.24
2	В	601	NAD	C2A-N3A	2.86	1.36	1.32
2	А	502	NAD	C2A-N3A	2.83	1.36	1.32
2	А	502	NAD	O3D-C3D	2.82	1.49	1.43
2	В	601	NAD	O3D-C3D	2.81	1.49	1.43
2	D	502	NAD	O3D-C3D	2.80	1.49	1.43
2	С	501	NAD	C2A-N3A	2.79	1.36	1.32

Jfa α ntin

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	А	501	NAD	C2A-N3A	2.78	1.36	1.32
2	В	602	NAD	O3D-C3D	2.77	1.49	1.43
2	В	602	NAD	C2A-N3A	2.76	1.36	1.32
2	С	502	NAD	O3D-C3D	2.75	1.49	1.43
2	С	501	NAD	O3D-C3D	2.72	1.49	1.43
2	D	501	NAD	O3D-C3D	2.71	1.49	1.43
2	D	501	NAD	C2A-N3A	2.69	1.36	1.32
2	D	502	NAD	C2A-N3A	2.68	1.36	1.32
2	А	501	NAD	O3D-C3D	2.68	1.49	1.43
2	С	502	NAD	C2A-N3A	2.61	1.36	1.32
2	В	602	NAD	C5A-C4A	-2.47	1.34	1.40
2	С	501	NAD	C5B-C4B	2.47	1.59	1.51
2	D	502	NAD	C5A-C4A	-2.47	1.34	1.40
2	D	501	NAD	C5B-C4B	2.46	1.59	1.51
2	А	501	NAD	C5B-C4B	2.46	1.59	1.51
2	D	501	NAD	C5A-C4A	-2.45	1.34	1.40
2	А	501	NAD	C5A-C4A	-2.43	1.34	1.40
2	С	502	NAD	C5A-C4A	-2.43	1.34	1.40
2	В	601	NAD	C5A-C4A	-2.42	1.34	1.40
2	А	502	NAD	C5A-C4A	-2.42	1.34	1.40
2	D	502	NAD	C5B-C4B	2.40	1.59	1.51
2	В	602	NAD	C5B-C4B	2.36	1.59	1.51
2	С	501	NAD	C5A-C4A	-2.35	1.34	1.40
2	A	502	NAD	C5B-C4B	2.35	1.58	1.51
2	С	502	NAD	$C\overline{5B}-C4B$	2.34	1.58	1.51
2	В	601	NAD	C5B-C4B	2.34	1.58	1.51

All (72) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	D	502	NAD	C5A-C6A-N6A	7.17	131.25	120.35
2	С	502	NAD	C5A-C6A-N6A	7.16	131.23	120.35
2	D	501	NAD	C5A-C6A-N6A	7.13	131.19	120.35
2	С	501	NAD	C5A-C6A-N6A	7.05	131.07	120.35
2	А	501	NAD	C5A-C6A-N6A	6.78	130.66	120.35
2	В	602	NAD	C5A-C6A-N6A	6.78	130.65	120.35
2	А	502	NAD	C5A-C6A-N6A	6.75	130.61	120.35
2	В	601	NAD	C5A-C6A-N6A	6.68	130.50	120.35
2	В	601	NAD	N3A-C2A-N1A	-5.41	120.22	128.68
2	А	501	NAD	N3A-C2A-N1A	-5.39	120.26	128.68
2	C	502	NAD	N3A-C2A-N1A	-5.36	120.30	128.68
2	В	602	NAD	N3A-C2A-N1A	-5.35	120.32	128.68

6ZTH

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
2	А	502	NAD	N3A-C2A-N1A	-5.33	120.35	128.68
2	D	502	NAD	N3A-C2A-N1A	-5.28	120.43	128.68
2	D	501	NAD	N3A-C2A-N1A	-5.27	120.45	128.68
2	С	501	NAD	N3A-C2A-N1A	-5.26	120.46	128.68
2	D	501	NAD	N6A-C6A-N1A	-4.51	109.22	118.57
2	С	502	NAD	N6A-C6A-N1A	-4.47	109.29	118.57
2	А	501	NAD	N6A-C6A-N1A	-4.45	109.33	118.57
2	С	501	NAD	N6A-C6A-N1A	-4.44	109.36	118.57
2	D	502	NAD	N6A-C6A-N1A	-4.41	109.43	118.57
2	В	602	NAD	N6A-C6A-N1A	-4.40	109.45	118.57
2	А	502	NAD	N6A-C6A-N1A	-4.36	109.52	118.57
2	В	601	NAD	N6A-C6A-N1A	-4.34	109.56	118.57
2	А	501	NAD	C1B-N9A-C4A	3.26	132.36	126.64
2	С	502	NAD	C3B-C2B-C1B	3.21	105.81	100.98
2	С	501	NAD	C1B-N9A-C4A	3.08	132.04	126.64
2	А	502	NAD	C3B-C2B-C1B	3.07	105.59	100.98
2	А	501	NAD	PN-O3-PA	-2.88	122.94	132.83
2	D	502	NAD	C1B-N9A-C4A	2.85	131.64	126.64
2	С	501	NAD	PN-O3-PA	-2.70	123.57	132.83
2	В	602	NAD	C1B-N9A-C4A	2.63	131.26	126.64
2	А	502	NAD	C1B-N9A-C4A	2.59	131.19	126.64
2	D	501	NAD	PN-O3-PA	-2.59	123.94	132.83
2	D	502	NAD	O4B-C1B-C2B	-2.55	103.20	106.93
2	В	601	NAD	PN-O3-PA	-2.54	124.11	132.83
2	В	601	NAD	C1B-N9A-C4A	2.53	131.08	126.64
2	С	502	NAD	C3D-C2D-C1D	2.52	104.77	100.98
2	В	602	NAD	PN-O3-PA	-2.51	124.21	132.83
2	А	502	NAD	C6N-N1N-C2N	-2.51	119.69	121.97
2	D	502	NAD	C3N-C7N-N7N	2.51	120.76	117.75
2	С	502	NAD	C1B-N9A-C4A	2.48	131.00	126.64
2	В	601	NAD	C6N-N1N-C2N	-2.44	119.75	121.97
2	В	602	NAD	C6N-N1N-C2N	-2.36	119.82	121.97
2	D	502	NAD	PN-O3-PA	-2.34	124.79	132.83
2	А	502	NAD	PN-O3-PA	-2.32	124.86	132.83
2	С	502	NAD	C6N-N1N-C2N	-2.29	119.88	121.97
2	D	501	NAD	C1B-N9A-C4A	2.26	130.62	126.64
2	В	602	NAD	C3D-C2D-C1D	2.26	104.38	100.98
2	A	501	NAD	C3N-C7N-N7N	2.26	120.46	117.75
2	В	601	NAD	O4D-C1D-C2D	-2.20	103.71	106.93
2	В	602	NAD	O4D-C1D-C2D	-2.20	103.71	106.93
2	A	502	NAD	O4D-C1D-C2D	-2.18	103.74	106.93
2	C	501	NAD	C3B-C2B-C1B	2.16	104.23	100.98

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	А	502	NAD	C3D-C2D-C1D	2.14	104.21	100.98
2	А	501	NAD	C3B-C2B-C1B	2.14	104.19	100.98
2	D	501	NAD	O4D-C1D-C2D	-2.14	103.80	106.93
2	D	502	NAD	C2B-C3B-C4B	2.12	106.77	102.64
2	А	501	NAD	C2B-C3B-C4B	2.11	106.75	102.64
2	D	501	NAD	C3N-C7N-N7N	2.11	120.29	117.75
2	А	502	NAD	C2D-C3D-C4D	2.11	106.73	102.64
2	В	602	NAD	C2D-C3D-C4D	2.10	106.73	102.64
2	В	601	NAD	C3D-C2D-C1D	2.10	104.14	100.98
2	В	601	NAD	C3B-C2B-C1B	2.09	104.13	100.98
2	D	502	NAD	C2D-C3D-C4D	2.08	106.69	102.64
2	А	501	NAD	O4B-C1B-C2B	-2.08	103.89	106.93
2	А	501	NAD	O4D-C1D-C2D	-2.07	103.91	106.93
2	С	502	NAD	C2D-C3D-C4D	2.06	106.65	102.64
2	С	502	NAD	PN-O3-PA	-2.05	125.80	132.83
2	D	502	NAD	O4D-C1D-C2D	-2.04	103.95	106.93
2	D	502	NAD	O7N-C7N-N7N	-2.03	119.70	122.58
2	В	601	NAD	C2D-C3D-C4D	2.01	106.54	102.64

There are no chirality outliers.

All (29) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	А	501	NAD	PN-O3-PA-O5B
2	А	502	NAD	C5D-O5D-PN-O1N
2	А	502	NAD	O4D-C1D-N1N-C6N
2	В	601	NAD	C5D-O5D-PN-O3
2	В	601	NAD	C5D-O5D-PN-O1N
2	В	601	NAD	O4D-C1D-N1N-C6N
2	В	602	NAD	C5D-O5D-PN-O1N
2	С	501	NAD	PN-O3-PA-O5B
2	С	502	NAD	PA-O3-PN-O5D
2	С	502	NAD	C5D-O5D-PN-O1N
2	С	502	NAD	O4D-C1D-N1N-C6N
2	D	502	NAD	O4D-C4D-C5D-O5D
2	D	502	NAD	C3D-C4D-C5D-O5D
2	А	502	NAD	PA-O3-PN-O5D
2	В	601	NAD	PA-O3-PN-O5D
2	D	502	NAD	PN-O3-PA-O5B
2	A	501	NAD	O4D-C4D-C5D-O5D
2	А	501	NAD	C4N-C3N-C7N-N7N
2	А	501	NAD	C4N-C3N-C7N-O7N

Mol	Chain	Res	Type	Atoms
2	С	501	NAD	C4N-C3N-C7N-N7N
2	С	501	NAD	C4N-C3N-C7N-O7N
2	А	502	NAD	C5D-O5D-PN-O3
2	В	602	NAD	C5D-O5D-PN-O3
2	С	502	NAD	C5D-O5D-PN-O3
2	D	501	NAD	C4N-C3N-C7N-O7N
2	D	501	NAD	C4N-C3N-C7N-N7N
2	С	502	NAD	PN-O3-PA-O1A
2	С	502	NAD	PN-O3-PA-O2A
2	А	501	NAD	C3D-C4D-C5D-O5D

There are no ring outliers.

7 monomers are involved in 22 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	С	501	NAD	3	0
2	А	501	NAD	3	0
2	D	501	NAD	6	0
2	С	502	NAD	1	0
2	D	502	NAD	7	0
2	А	502	NAD	3	0
2	В	602	NAD	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2		$OWAB(Å^2)$	Q<0.9	
1	А	457/489~(93%)	2.76	321 (70%)	0	0	19, 35, 56, 82	3~(0%)
1	В	457/489~(93%)	2.89	327~(71%)	0	0	17, 39, 65, 91	1 (0%)
1	С	454/489~(92%)	2.94	338 (74%)	0	0	22, 37, 61, 98	2 (0%)
1	D	461/489~(94%)	3.09	350~(75%)	0	0	25, 41, 65, 97	0
All	All	1829/1956~(93%)	2.92	1336 (73%)	0	0	17, 38, 62, 98	6 (0%)

All (1336) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	127	GLY	11.7
1	В	138	PHE	11.5
1	С	424	SER	11.1
1	D	427	ASP	10.8
1	D	399	GLY	9.5
1	А	136	SER	9.4
1	В	136	SER	9.3
1	D	136	SER	9.3
1	D	424	SER	9.2
1	D	412	ALA	8.8
1	С	10	SER	8.6
1	D	137	PHE	8.4
1	D	425	LEU	8.1
1	В	137	PHE	8.0
1	D	140	GLY	7.9
1	D	343	TYR	7.9
1	D	396	GLY	7.8
1	В	141	ILE	7.7
1	D	428	ILE	7.6
1	С	229	SER	7.5
1	С	104	ALA	7.4

6ZTH

Mol	Chain	Res	Type	RSRZ
1	С	402	VAL	7.4
1	С	419	LEU	7.3
1	А	189	PHE	7.3
1	D	104	ALA	7.3
1	С	221	HIS	7.2
1	D	138	PHE	7.1
1	D	400	PHE	7.1
1	D	229	SER	7.1
1	С	378	TYR	7.1
1	В	174	GLY	7.0
1	А	-1	GLY	6.9
1	В	379	PHE	6.9
1	А	425	LEU	6.9
1	С	412	ALA	6.8
1	А	229	SER	6.8
1	А	408	SER	6.8
1	D	317	THR	6.8
1	D	350	GLY	6.8
1	D	429	HIS	6.7
1	А	415	TYR	6.7
1	D	134	ILE	6.6
1	В	424	SER	6.6
1	С	231	VAL	6.5
1	А	104	ALA	6.5
1	В	423	SER	6.5
1	D	10	SER	6.5
1	В	352	GLN	6.4
1	А	378	TYR	6.4
1	В	57	ILE	6.4
1	D	402	VAL	6.3
1	D	438	VAL	6.3
1	С	140	GLY	6.3
1	А	127	GLY	6.3
1	D	344	ASP	6.3
1	А	87	GLY	6.2
1	С	230	LEU	6.2
1	С	139	GLU	6.2
1	А	192	ALA	6.1
1	В	348	THR	6.1
1	D	426	ALA	6.0
1	А	424	SER	6.0
1	А	118	ASN	6.0

Mol	Chain	Res	Type	RSRZ
1	D	9	TRP	6.0
1	А	142	GLU	6.0
1	А	414	ALA	5.9
1	С	134	ILE	5.9
1	В	316	PHE	5.9
1	С	438	VAL	5.9
1	D	198	GLY	5.9
1	D	143	PRO	5.9
1	D	423	SER	5.9
1	С	282	VAL	5.8
1	D	440	VAL	5.8
1	С	218	LEU	5.8
1	А	-2	ALA	5.8
1	А	174	GLY	5.8
1	В	229	SER	5.8
1	D	409	SER	5.8
1	С	431	ILE	5.8
1	А	342	ASP	5.7
1	В	206	VAL	5.7
1	D	193	VAL	5.7
1	D	422	HIS	5.7
1	А	409	SER	5.7
1	В	140	GLY	5.7
1	В	311	VAL	5.7
1	D	98	TYR	5.6
1	С	141	ILE	5.6
1	С	0	THR	5.6
1	D	189	PHE	5.6
1	A	396	GLY	5.6
1	В	135	LYS	5.6
1	С	137	PHE	5.6
1	D	430	LYS	5.6
1	С	404	ALA	5.5
1	D	139	GLU	5.5
1	В	363	PHE	5.5
1	С	314	LEU	5.5
1	А	295	LEU	5.5
1	D	414	ALA	5.5
1	С	9	TRP	5.4
1	А	298	ILE	5.4
1	В	438	VAL	5.4
1	С	285[A]	ARG	5.4

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
1	В	396	GLY	5.4
1	D	165	TRP	5.4
1	С	74	ARG	5.3
1	С	170	CYS	5.3
1	С	348	THR	5.3
1	В	189	PHE	5.3
1	D	230	LEU	5.3
1	D	159	TRP	5.3
1	С	151	LEU	5.3
1	D	340	LEU	5.3
1	С	390	ASN	5.3
1	С	86	THR	5.3
1	D	349	ALA	5.3
1	В	350	GLY	5.3
1	С	146	CYS	5.3
1	С	444	LEU	5.3
1	С	305	ASN	5.2
1	А	8	GLY	5.2
1	В	230	LEU	5.2
1	D	332	LEU	5.2
1	А	397	ASN	5.2
1	В	233	ALA	5.2
1	D	421	PHE	5.1
1	В	91	VAL	5.1
1	С	354	SER	5.1
1	D	310	PHE	5.1
1	В	102	ASN	5.1
1	В	0	THR	5.1
1	С	227	GLY	5.1
1	D	-2	ALA	5.1
1	В	378	TYR	5.1
1	С	410	ASP	5.1
1	А	447	ARG	5.1
1	С	409	SER	5.1
1	D	387	GLY	5.1
1	С	343	TYR	5.1
1	С	344	ASP	5.1
1	А	70	ALA	5.0
1	С	474	ASP	5.0
1	D	432	LEU	5.0
1	А	423	SER	5.0
1	D	339	HIS	5.0

Mol	Chain	Res	Type	RSRZ
1	А	9	TRP	5.0
1	А	86	THR	5.0
1	D	161	LEU	5.0
1	В	431	ILE	5.0
1	С	411	GLN	5.0
1	В	227	GLY	5.0
1	С	75	ASP	5.0
1	А	141	ILE	5.0
1	В	120	GLY	4.9
1	В	165	TRP	4.9
1	С	396	GLY	4.9
1	D	248	GLY	4.9
1	В	208	VAL	4.9
1	В	345	LEU	4.9
1	С	232	VAL	4.9
1	С	341	ILE	4.9
1	В	130	ARG	4.9
1	В	359	PRO	4.9
1	А	211	THR	4.9
1	С	228	GLU	4.9
1	D	410	ASP	4.9
1	С	430	LYS	4.9
1	В	76	GLY	4.9
1	В	317	THR	4.9
1	С	320	TYR	4.8
1	D	244	GLY	4.8
1	В	55	ASP	4.8
1	D	102	ASN	4.8
1	В	387	GLY	4.8
1	В	405	TYR	4.8
1	A	75	ASP	4.8
1	В	315	VAL	4.8
1	C	339	HIS	4.8
1	A	244	GLY	4.8
1	D	330	PHE	4.8
1	В	310	PHE	4.8
1	D	218	LEU	4.8
1	A	242	ALA	4.7
1	A	88	GLY	4.7
1	В	51	THR	4.7
1	D	126	LEU	4.7
1	D	378	TYR	4.7

Continued from previous page					
Mol	Chain	Res	Type	RSRZ	
1	С	422	HIS	4.7	
1	В	154	GLY	4.7	
1	D	363	PHE	4.7	
1	В	228	GLU	4.7	
1	В	380	LEU	4.7	
1	А	410	ASP	4.7	
1	В	353	TYR	4.7	
1	D	215	TYR	4.7	
1	D	296	ASP	4.7	
1	D	368	ARG	4.7	
1	А	33	LEU	4.7	
1	А	117	ALA	4.6	
1	D	357	ALA	4.6	
1	С	102	ASN	4.6	
1	С	179	VAL	4.6	
1	D	448	VAL	4.6	
1	D	341	ILE	4.6	
1	А	108	LEU	4.6	
1	В	340	LEU	4.6	
1	С	295	LEU	4.6	
1	С	437	THR	4.6	
1	D	191	ASP	4.6	
1	С	172	ALA	4.6	
1	С	54	VAL	4.6	
1	D	135	LYS	4.6	
1	А	143	PRO	4.6	
1	А	152	GLU	4.6	
1	D	142	GLU	4.6	
1	D	418	LEU	4.6	
1	С	92	ARG	4.6	
1	А	288	TYR	4.6	
1	В	126	LEU	4.6	
1	С	313	THR	4.6	
1	D	0	THR	4.6	
1	D	86	THR	4.6	
1	В	129	SER	4.6	
1	С	135	LYS	4.6	
1	С	136	SER	4.6	
1	D	354	SER	4.6	
1	В	341	ILE	4.6	
1	C	350	GLY	4.5	
1	А	135	LYS	4.5	

135LYS4.5Continued on next page...

Mol Chain

1	В	131	LEU	4.5
1	В	368	ARG	4.5
1	А	129	SER	4.5
1	D	115	ALA	4.5
1	В	289	ASN	4.5
1	А	228	GLU	4.5
1	С	76	GLY	4.5
1	С	103	LEU	4.5
1	С	423	SER	4.5
1	A	240	PRO	4.5
1	А	140	GLY	4.5
1	В	75	ASP	4.5
1	D	158	SER	4.5
1	D	337	GLY	4.4
1	А	444	LEU	4.4
1	В	123	LEU	4.4
1	В	178	PHE	4.4
1	С	403	LYS	4.4
1	D	120	GLY	4.4
1	D	374	GLY	4.4
1	В	437	THR	4.4
1	D	150	TRP	4.4
1	В	103	LEU	4.4
1	D	366	ARG	4.4
1	А	11	VAL	4.4
1	А	208	VAL	4.4
1	А	413	LEU	4.4
1	В	211	THR	4.3
1	В	121	SER	4.3
1	D	285	ARG	4.3
1	С	421	PHE	4.3
1	С	258	ILE	4.3
1	D	185	ILE	4.3
1	А	51	THR	4.3
1	С	34	ASP	4.3
1	С	51	THR	4.3
1	С	366	ARG	4.3
1	В	172	ALA	4.3
1	В	182	GLY	4.3
1	В	147	VAL	4.3

α \cdot \cdot \cdot	C		
Continued	trom	nremous	naae
Contentaca	1.0110	proceed ac	$P^{\alpha}g^{\alpha}\cdots$

Res

Type | RSRZ

VAL Continued on next page...

VAL

4.3

4.3

В

С

1

1

440

448

Mol

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

А

D

С

D

А

А

С

А

С

А

RSRZ

4.3

4.3

4.3

4.3

4.3

Type

ASP

TYR

GLY

ARG

 TYR

В	287	SER	4.3	
А	330	PHE	4.3	
С	87	GLY	4.3	
D	404	ALA	4.3	
А	231	VAL	4.3	
В	179	VAL	4.3	
D	52	VAL	4.3	
В	397	ASN	4.2	
D	411	GLN	4.2	
С	389	ILE	4.2	
А	230	LEU	4.2	
А	411	GLN	4.2	
С	238	THR	4.2	
D	391	THR	4.2	
А	10	SER	4.2	
В	442	ILE	4.2	
D	112	ILE	4.2	
А	305	ASN	4.2	
D	469	THR	4.2	
В	240	PRO	4.2	
D	85	SER	4.2	
D	23	TRP	4.2	
D	431	ILE	4.2	
В	422	HIS	4.2	
В	9	TRP	4.1	
D	91	VAL	4.1	
D	232	VAL	4.1	

Continued from previous page...

Res

169

346

374

331

415

Chain

В

В

С

D

В

ASN Continued on next page...

LEU

ASP

PRO

PRO

GLY

CYS

PHE

VAL

LEU

4.1

4.1

4.1

4.1

4.1

4.1

4.1

4.1

4.1

4.1

103

334

351

351

361

81

189

147

33

102

• 1	
.1	
.1	
.1	
.1	
.1	
.1	

Continued from previous page...

 Mol
 Chain
 Res
 Type
 RSRZ

10101	Cinaini	1000	- JP0	ICOICE
1	А	138	PHE	4.1
1	С	329	ILE	4.1
1	В	448	VAL	4.1
1	А	167	ASP	4.1
1	В	297	ASN	4.1
1	С	171	THR	4.1
1	С	355	GLU	4.1
1	С	85	SER	4.1
1	В	433	HIS	4.1
1	В	313	THR	4.1
1	D	-1	GLY	4.0
1	D	408	SER	4.0
1	В	170	CYS	4.0
1	С	131	LEU	4.0
1	С	291	LEU	4.0
1	С	193	VAL	4.0
1	С	364	VAL	4.0
1	D	205	VAL	4.0
1	А	120	GLY	4.0
1	D	243	PHE	4.0
1	В	373	ARG	4.0
1	С	417	ARG	4.0
1	А	422	HIS	4.0
1	С	98	TYR	4.0
1	С	415	TYR	4.0
1	D	168	TYR	4.0
1	В	351	PRO	4.0
1	D	225	ASP	4.0
1	С	469	THR	4.0
1	D	437	THR	4.0
1	A	76	GLY	4.0
1	A	250	SER	4.0
1	A	284	SER	4.0
1	В	104	ALA	4.0
1	В	324	ARG	4.0
1	А	246	LEU	4.0
1	Α	419	LEU	4.0
1	D	57	ILE	4.0
1	В	176	TYR	4.0
1	В	193	VAL	4.0
1	A	224	GLY	4.0
1	В	284	SER	4.0

α \cdot \cdot \cdot	C		
Continued	trom	nremous	naae
00100000000	<i>J</i> · <i>O</i> · · · <i>O</i>	proceed ac	pagem

Mol	Chain	Res	Type	RSRZ
1	С	398	LEU	4.0
1	А	442	ILE	4.0
1	D	389	ILE	4.0
1	А	179	VAL	3.9
1	С	118	ASN	3.9
1	С	299	THR	3.9
1	С	284	SER	3.9
1	D	324	ARG	3.9
1	D	58	ALA	3.9
1	А	137	PHE	3.9
1	С	363	PHE	3.9
1	D	131	LEU	3.9
1	А	351	PRO	3.9
1	В	54	VAL	3.9
1	D	348	THR	3.9
1	В	275	TRP	3.9
1	D	221	HIS	3.9
1	D	471	LYS	3.9
1	С	333	ILE	3.9
1	С	342	ASP	3.9
1	А	401	ARG	3.9
1	В	285[A]	ARG	3.9
1	А	465	SER	3.9
1	С	312	LYS	3.9
1	В	298	ILE	3.9
1	В	435	ASN	3.9
1	D	130	ARG	3.9
1	D	315	VAL	3.9
1	D	342	ASP	3.9
1	В	360	ALA	3.9
1	С	298	ILE	3.8
1	С	401	ARG	3.8
1	D	92	ARG	3.8
1	В	391	THR	3.8
1	В	325	TYR	3.8
1	D	433	HIS	3.8
1	В	117	ALA	3.8
1	A	218	LEU	3.8
1	D	217	LEU	3.8
1	С	243	PHE	3.8
1	В	118	ASN	3.8
1	C	435	ASN	3.8

6ZTH

Mol	Chain	Res	Type	RSRZ
1	D	101	ASN	3.8
1	D	328	ILE	3.8
1	А	169	ASP	3.8
1	В	53	THR	3.8
1	В	197	THR	3.8
1	В	150	TRP	3.8
1	D	347	LEU	3.8
1	А	247	PRO	3.8
1	D	316	PHE	3.8
1	В	101	ASN	3.8
1	В	194	ASN	3.8
1	D	435	ASN	3.8
1	А	403	LYS	3.8
1	С	399	GLY	3.8
1	С	223	GLU	3.8
1	С	408	SER	3.8
1	С	416	TYR	3.8
1	В	462	ALA	3.8
1	D	172	ALA	3.8
1	А	123	LEU	3.8
1	В	398	LEU	3.8
1	В	419	LEU	3.8
1	D	444	LEU	3.8
1	D	338	ASN	3.8
1	А	184	LYS	3.8
1	D	141	ILE	3.8
1	С	405	TYR	3.7
1	В	414	ALA	3.7
1	А	390	ASN	3.7
1	В	338	ASN	3.7
1	В	390	ASN	3.7
1	D	329	ILE	3.7
1	А	204	GLY	3.7
1	D	59	ARG	3.7
1	В	196	TYR	3.7
1	В	343	TYR	3.7
1	С	346	TYR	3.7
1	А	249	LEU	3.7
1	D	295	LEU	3.7
1	D	314	LEU	3.7
1	В	204	GLY	3.7
1	\mathbf{C}	23	TRP	3.7

Mol	Chain	Res	Type	RSRZ
1	С	337	GLY	3.7
1	А	451	THR	3.7
1	В	409	SER	3.7
1	А	114	LEU	3.7
1	В	358	LEU	3.7
1	С	89	PRO	3.7
1	С	214	ASN	3.7
1	А	154	GLY	3.7
1	А	421	PHE	3.7
1	С	373	ARG	3.7
1	В	86	THR	3.7
1	С	377	THR	3.7
1	D	54	VAL	3.7
1	D	206	VAL	3.7
1	D	236	THR	3.7
1	D	415	TYR	3.7
1	А	151[A]	LEU	3.7
1	А	432	LEU	3.7
1	В	370	LEU	3.7
1	D	406	PRO	3.7
1	D	420	ASP	3.7
1	А	329	ILE	3.7
1	А	100	LYS	3.6
1	В	432	LEU	3.6
1	D	8	GLY	3.6
1	В	421	PHE	3.6
1	С	90	ILE	3.6
1	А	348	THR	3.6
1	С	150	TRP	3.6
1	В	58	ALA	3.6
1	В	332	LEU	3.6
1	С	392	PRO	3.6
1	D	345	LEU	3.6
1	A	243	PHE	3.6
1	A	363	PHE	3.6
1	D	90	ILE	3.6
1	В	216	SER	3.6
1	В	392	PRO	3.6
1	D	434	PRO	3.6
1	А	73	LEU	3.6
1	A	196	TYR	3.6
1	D	106	CYS	3.6

Mol

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

А

А

В

С

D

D

В

А

D

А

С

392

173

159

349

194

242

420

134

133

316

316

С	130	ARG	3.6	
D	15	ASN	3.5	
D	257	GLY	3.5	
В	330	PHE	3.5	
А	171	THR	3.5	
В	452	VAL	3.5	
D	373	ARG	3.5	
С	126	LEU	3.5	
С	117	ALA	3.5	
С	182	GLY	3.5	
А	186	ASP	3.5	
А	191	ASP	3.5	
В	146	CYS	3.5	
В	464	ILE	3.5	
D	442	ILE	3.5	
А	301	GLU	3.5	
С	311	VAL	3.5	
А	275	TRP	3.5	
С	217	LEU	3.5	
В	356	GLN	3.5	
D	176	TYR	3.5	
В	407	GLU	3.5	
С	138	PHE	3.5	
В	205	VAL	3.5	

Continued from previous page...

Res

410

302

51

339

364

139

10

Type

ASP

THR

THR

HIS

VAL GLU

SER

RSRZ

3.6

3.6

3.6

3.6

3.6

3.6

3.6

Chain

В

А

D

В

В

В

В

PHE Continued on next page...

PRO

ASN

TRP

ALA

ASN

ALA

ASP

ILE

ARG

PHE

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

6ZTH

Mol	Chain	Res	Type	RSRZ
1	В	466	GLY	3.4
1	С	127	GLY	3.4
1	D	233	ALA	3.4
1	В	286	ASP	3.4
1	В	142	GLU	3.4
1	D	309	GLU	3.4
1	С	181	THR	3.4
1	D	16	THR	3.4
1	D	48	PHE	3.4
1	D	128	LYS	3.4
1	D	377	THR	3.4
1	А	216	SER	3.4
1	С	108	LEU	3.4
1	С	280	LEU	3.4
1	С	101	ASN	3.4
1	С	212	ASN	3.4
1	С	159	TRP	3.4
1	С	463[A]	LYS	3.4
1	В	329	ILE	3.4
1	А	0	THR	3.4
1	D	171	THR	3.4
1	А	168	TYR	3.4
1	А	416	TYR	3.4
1	В	288	TYR	3.4
1	В	411	GLN	3.4
1	С	147	VAL	3.4
1	В	314	LEU	3.4
1	C	166	LEU	3.4
1	A	289	ASN	3.4
1	В	366	ARG	3.4
1	D	254	LYS	3.4
1	D	384	ILE	3.4
1	A	400	PHE	3.4
1	В	292	VAL	3.4
1	В	402	VAL	3.4
1	С	315	VAL	3.4
1	D	216	SER	3.4
1	А	291	LEU	3.4
1	В	447	ARG	3.4
1	A	182	GLY	3.4
1	В	399	GLY	3.4
1	A	412	ALA	3.4

Continued from previous page					
Mol	Chain	Res	Type	RSRZ	
1	В	349	ALA	3.4	
1	С	293	LYS	3.4	
1	D	403	LYS	3.4	
1	D	335	ASP	3.4	
1	D	405	TYR	3.3	
1	С	336	ARG	3.3	
1	С	114	LEU	3.3	
1	D	291	LEU	3.3	
1	С	142	GLU	3.3	
1	D	223	GLU	3.3	
1	С	297	ASN	3.3	
1	D	88	GLY	3.3	
1	С	357	ALA	3.3	
1	С	53	THR	3.3	
1	С	77	GLN	3.3	
1	D	352	GLN	3.3	
1	С	178	PHE	3.3	
1	С	406	PRO	3.3	
1	А	336	ARG	3.3	
1	А	193	VAL	3.3	
1	D	6	VAL	3.3	
1	А	24	LEU	3.3	
1	А	166	LEU	3.3	
1	D	372	ASN	3.3	
1	А	420	ASP	3.3	
1	А	313	THR	3.3	
1	В	185	ILE	3.3	
1	С	57	ILE	3.3	
1	D	302	THR	3.3	
1	D	379	PHE	3.3	
1	A	311	VAL	3.3	
1	A	161	LEU	3.3	
1	В	166	LEU	3.3	
1	В	347	LEU	3.3	
1	D	151	LEU	3.3	
1	D	196	TYR	3.3	
1	D	118	ASN	3.3	
1	D	75	ASP	3.3	
1	В	181	THR	3.3	
1	В	389	ILE	3.3	
1	С	451	THR	3.3	
1	С	91	VAL	3.3	

91VAL3.3Continued on next page...

Mol	Chain	Res	Type	RSRZ
1	D	166	LEU	3.3
1	D	452	VAL	3.3
1	В	212	ASN	3.3
1	D	76	GLY	3.3
1	А	279[A]	CYS	3.3
1	А	122	ALA	3.3
1	А	349	ALA	3.3
1	С	192	ALA	3.3
1	D	124	ALA	3.3
1	В	167	ASP	3.2
1	D	356	GLN	3.2
1	А	105	LYS	3.2
1	В	100	LYS	3.2
1	С	442	ILE	3.2
1	B	400	PHE	3.2
1	С	330	PHE	3.2
1	С	148	LEU	3.2
1	С	418	LEU	3.2
1	D	73	LEU	3.2
1	A	214	ASN	3.2
1	D	390	ASN	3.2
1	С	288	TYR	3.2
1	D	353	TYR	3.2
1	В	191	ASP	3.2
1	В	334	ASP	3.2
1	D	192	ALA	3.2
1	A	74	ARG	3.2
1	D	336	ARG	3.2
1	В	467	LYS	3.2
1	C	310	PHE	3.2
1	C	400	PHE	3.2
1	B	109	SER	3.2
1	D	129	SER	3.2
1	A	212	ASN	3.2
1	B	226	ASN	3.2
1	B	395	GLN	3.2
1	D	320	TYR	3.2
1	B	344	ASP	3.2
1	C	273	ALA	3.2
1	D	472	LYS	3.2
1	D	436	GLU	3.2
1	A	299	THR	3.2

Mol	Chain	Res	Type	RSRZ
1	В	171	THR	3.2
1	С	468	PRO	3.2
1	А	347	LEU	3.2
1	А	315	VAL	3.2
1	D	39	ASN	3.2
1	D	371	ASN	3.2
1	А	176	TYR	3.2
1	В	219	LYS	3.2
1	В	251	HIS	3.2
1	С	290	LYS	3.2
1	D	346	TYR	3.2
1	А	464	ILE	3.2
1	А	332	LEU	3.2
1	А	354	SER	3.2
1	В	243	PHE	3.2
1	С	48	PHE	3.2
1	С	153	LEU	3.2
1	D	370	LEU	3.2
1	А	368	ARG	3.1
1	А	448	VAL	3.1
1	А	150	TRP	3.1
1	А	55	ASP	3.1
1	А	58	ALA	3.1
1	С	70	ALA	3.1
1	С	197	THR	3.1
1	В	384	ILE	3.1
1	D	97	LEU	3.1
1	С	191	ASP	3.1
1	С	296	ASP	3.1
1	A	45	TYR	3.1
1	В	416	TYR	3.1
1	С	215	TYR	3.1
1	A	148	LEU	3.1
1	В	277	LEU	3.1
1	С	376	LEU	3.1
1	D	419	LEU	3.1
1	A	47	SER	3.1
1	A	99	PHE	3.1
1	D	388	GLY	3.1
1	A	52	VAL	3.1
1	A	440	VAL	3.1
1	С	52	VAL	3.1

Continued from previous page...

Mol

1 1

1

1

1

1

1

1

1

1

1 1

1

1

 374	GLY	3.1
88	GLY	3.1
123	LEU	3.1
338	ASN	3.1
369	ASN	3.1
379	PHE	3.1
62	ASP	3.1
343	TYR	3.1
247	PRO	3.1
190	TYR	3.1
450	ARG	3.1
78	ARG	3.1
188	GLN	3.0
395	GLN	3.0
119	HIS	3.0
103	LEU	3.0
323	ASN	3.0
379	PHE	3.0
65	VAL	3.0
211	VAT	3.0

Continued from previous page...

Res

208

286

225

381

55

468

299

160

Type

VAL

ASP

ASP

ASP

ASP

PRO

THR

GLN

RSRZ

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

Chain

С

А

В

С

D

В

В

D

А

С

D

А С

С

D 1 1 А 1 В D 1 С 1 1 D С 1 1 D 1 А D 1 1 D А 1 1 D D 1 311 VAL 3.01 А 116PRO 3.0 1 А 293LYS 3.0D 1 290 LYS 3.01 В 320 TYR 3.0 TYR 3.0 1 D 416 А GLN 1 222 3.0 С 1 GLN 2393.0С 395 GLN 3.0 1 С 1 35ILE 3.0 LEU 3.0 217 1 А GLY А 1 337 3.0В 1 8 GLY 3.01 А 355 GLU 3.0 1 С 169 ASP 3.0

Mol

1

1

1

1

1

1

1

1

1

1

1

1

1

1

А

А

В

В

В

С

D

В

RSRZ

3.0

3.0

3.0

3.0

3.0

3.0

Type

ARG

ARG

ALA

TYR

TRP

TYR

А	2	ILE	3.0	
С	224	GLY	3.0	
С	370	LEU	3.0	
С	289	ASN	3.0	
D	99	PHE	3.0	
С	175	VAL	3.0	
D	231	VAL	3.0	
А	393	LYS	3.0	
С	59	ARG	3.0	
С	133	ARG	3.0	
D	169	ASP	3.0	
В	124	ALA	3.0	
С	267	ALA	3.0	
D	267	ALA	3.0	
D	392	PRO	3.0	
D	13	HIS	3.0	
С	473	ILE	3.0	
D	333	ILE	3.0	
В	355	GLU	3.0	
С	470	GLY	3.0	
D	376	LEU	3.0	
В	465	SER	3.0	
D	318	ARG	3.0	
В	245	VAL	3.0	
D	56	ASP	3.0	
А	267	ALA	3.0	
В	236	THR	2.9	
A	112	ILE	2.9	

 $Continued \ from \ previous \ page...$

Res

285

417

117

353

275

353

Chain

А

В

D

А

С

С

LEU Continued on next page...

GLU

LEU

GLY

GLY

GLY

ILE

ILE

2.9

2.9

2.9

2.9

2.9

2.9

2.9

2.9

306

345

31

361

374

112

473

376

Mol Chain Res Type RSRZ 1 D 275 TRP 2.9 1 C 287 SER 2.9 1 A 170 CYS 2.9 1 B 232 VAL 2.9 1 C 440 VAL 2.9 1 C 366 GLN 2.9 1 A 366 GLN 2.9 1 A 115 ALA 2.9 1 A 115 ALA 2.9 1 A 53 THR 2.9 1 A 53 THR 2.9 1 B 244 GLY 2.9 1 B 444 LEU 2.9 1 B 444 LEU 2.9 1 D 50 ASP 2.9 1 D 166 PRO 2.9	Conti	nued from	n previou	s page	
1 D 275 TRP 2.9 1 C 287 SER 2.9 1 A 170 CYS 2.9 1 B 232 VAL 2.9 1 C 440 VAL 2.9 1 A 36 GLN 2.9 1 D 367 GLN 2.9 1 A 115 ALA 2.9 1 A 115 ALA 2.9 1 A 53 THR 2.9 1 A 53 THR 2.9 1 B 244 GLY 2.9 1 B 413 LEU 2.9 1 B 444 LEU 2.9 1 D 50 ASP 2.9 1 D $163[A] GLU 2.9 1 D 1$	Mol	Chain	Res	Type	RSRZ
1 C 287 SER 2.9 1 A 170 CYS 2.9 1 B 232 VAL 2.9 1 C 440 VAL 2.9 1 C 36 GLN 2.9 1 A 367 GLN 2.9 1 A 115 ALA 2.9 1 A 115 ALA 2.9 1 A 53 THR 2.9 1 A 53 THR 2.9 1 B 244 GLY 2.9 1 B 413 LEU 2.9 1 B 444 LEU 2.9 1 A 155 SER 2.9 1 D 50 ASP 2.9 1 D 116 PRO 2.9 1 D 116 SER 2.9 <tr< td=""><td>1</td><td>D</td><td>275</td><td>TRP</td><td>2.9</td></tr<>	1	D	275	TRP	2.9
1 A 170 CYS 2.9 1 B 232 VAL 2.9 1 C 440 VAL 2.9 1 A 36 GLN 2.9 1 D 367 GLN 2.9 1 D 367 GLN 2.9 1 A 115 ALA 2.9 1 A 153 THR 2.9 1 A 53 THR 2.9 1 A 53 THR 2.9 1 B 244 GLY 2.9 1 B 413 LEU 2.9 1 B 444 LEU 2.9 1 A 155 SER 2.9 1 D 50 ASP 2.9 1 D 116 PRO 2.9 1 D 116 PRO 2.9 1 A 163[A] GLU 2.9 <td< td=""><td>1</td><td>С</td><td>287</td><td>SER</td><td>2.9</td></td<>	1	С	287	SER	2.9
1 B 232 VAL 2.9 1 C 440 VAL 2.9 1 A 36 GLN 2.9 1 D 367 GLN 2.9 1 D 367 GLN 2.9 1 A 115 ALA 2.9 1 A 53 THR 2.9 1 A 53 THR 2.9 1 A 53 THR 2.9 1 B 244 GLY 2.9 1 B 444 LEU 2.9 1 B 444 LEU 2.9 1 A 155 SER 2.9 1 D 50 ASP 2.9 1 D 166 PRO 2.9 1 D 116 PRO 2.9 1 A 322 THR 2.9	1	А	170	CYS	2.9
1 C 440 VAL 2.9 1 A 36 GLN 2.9 1 D 367 GLN 2.9 1 A 115 ALA 2.9 1 A 115 ALA 2.9 1 A 53 THR 2.9 1 A 53 THR 2.9 1 B 244 GLY 2.9 1 B 444 LEU 2.9 1 B 444 LEU 2.9 1 B 444 LEU 2.9 1 A 155 SER 2.9 1 D 50 ASP 2.9 1 D 106 PRO 2.9 1 D 116 PRO 2.9 1 A 322 THR 2.9 1 A 328 ILE 2.9 <tr< td=""><td>1</td><td>В</td><td>232</td><td>VAL</td><td>2.9</td></tr<>	1	В	232	VAL	2.9
1 A 36 GLN 2.9 1 D 367 GLN 2.9 1 A 115 ALA 2.9 1 C 122 ALA 2.9 1 C 122 ALA 2.9 1 A 53 THR 2.9 1 B 244 GLY 2.9 1 B 444 LEU 2.9 1 B 444 LEU 2.9 1 B 444 LEU 2.9 1 A 155 SER 2.9 1 D 50 ASP 2.9 1 D 208 VAL 2.9 1 D 116 PRO 2.9 1 A 322 THR 2.9 1 A 323 ILE 2.9 1 B 312 LYS 2.9 1 C 42 LEU 2.9 1<	1	С	440	VAL	2.9
1 C 36 GLN 2.9 1 D 367 GLN 2.9 1 A 115 ALA 2.9 1 C 122 ALA 2.9 1 A 53 THR 2.9 1 B 244 GLY 2.9 1 B 444 LEU 2.9 1 B 444 LEU 2.9 1 B 444 LEU 2.9 1 A 155 SER 2.9 1 C 121 SER 2.9 1 D 50 ASP 2.9 1 D 208 VAL 2.9 1 D 116 PRO 2.9 1 A 322 THR 2.9 1 A 328 ILE 2.9 1 C 26 ASN	1	А	36	GLN	2.9
1 D 367 GLN 2.9 1 A 115 ALA 2.9 1 C 122 ALA 2.9 1 A 53 THR 2.9 1 D 181 THR 2.9 1 B 244 GLY 2.9 1 B 444 LEU 2.9 1 B 444 LEU 2.9 1 B 444 LEU 2.9 1 A 155 SER 2.9 1 D 50 ASP 2.9 1 D 208 VAL 2.9 1 D 116 PRO 2.9 1 A 322 THR 2.9 1 A 328 ILE 2.9 1 C 328 ILE 2.9 1 C 1	1	С	36	GLN	2.9
1A115ALA2.91C122ALA2.91D181THR2.91D181THR2.91B244GLY2.91B413LEU2.91B444LEU2.91A155SER2.91C121SER2.91D50ASP2.91D208VAL2.91D116PRO2.91A163[A]GLU2.91A322THR2.91B312LYS2.91B328ILE2.91C42LEU2.91C328ILE2.91C155SER2.91C190TYR2.91C155SER2.91C155SER2.91C155SER2.91C140PRO2.91D312LYS2.91D312LYS2.91D312LYS2.91D312LYS2.91D445GLN2.91D445GLN2.91D445GLN2.91D </td <td>1</td> <td>D</td> <td>367</td> <td>GLN</td> <td>2.9</td>	1	D	367	GLN	2.9
1C122ALA2.91D181THR2.91B244GLY2.91B413LEU2.91B413LEU2.91B444LEU2.91A155SER2.91A155SER2.91D50ASP2.91D208VAL2.91D116PRO2.91A163[A]GLU2.91A322THR2.91B312LYS2.91B328ILE2.91C42LEU2.91C328ILE2.91C155SER2.91C190TYR2.91C155SER2.91C155SER2.91C155SER2.91C155SER2.91C140PRO2.91D312LYS2.91D312LYS2.91D312LYS2.91D312LYS2.91D445GLN2.91D445GLN2.91D445GLN2.91A </td <td>1</td> <td>А</td> <td>115</td> <td>ALA</td> <td>2.9</td>	1	А	115	ALA	2.9
1A53THR2.91D181THR2.91B244GLY2.91B413LEU2.91B444LEU2.91A155SER2.91C121SER2.91D50ASP2.91D208VAL2.91D116PRO2.91A163[A]GLU2.91A322THR2.91B312LYS2.91B328ILE2.91C42LEU2.91C328ILE2.91C26ASN2.91C190TYR2.91C190TYR2.91C190TYR2.91C190TYR2.91A402VAL2.91A406PRO2.91D312LYS2.91B111LEU2.91B111LEU2.91A405TRP2.81C173ASN2.91A165TRP2.81C420ASP2.8	1	С	122	ALA	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	53	THR	2.9
1B244GLY2.91B413LEU2.91B444LEU2.91A155SER2.91C121SER2.91D50ASP2.91D208VAL2.91D116PRO2.91A163[A]GLU2.91A322THR2.91A322THR2.91B312LYS2.91B328ILE2.91C42LEU2.91C328ILE2.91C26ASN2.91C190TYR2.91C190TYR2.91C155SER2.91C155SER2.91C14THR2.91D312LYS2.91D312LYS2.91D312LYS2.91D312LYS2.91C173ASN2.91D445GLN2.91A165TRP2.81C420ASP2.8	1	D	181	THR	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	244	GLY	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	413	LEU	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	444	LEU	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	155	SER	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	121	SER	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	50	ASP	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	208	VAL	2.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	D	116	PRO	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	163[A]	GLU	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	322	THR	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	312	LYS	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	90	ILE	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	328	ILE	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	42	LEU	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	328	ILE	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	26	ASN	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	190	TYR	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	190	TYR	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	155	SER	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	79	PHE	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	402	VAL	2.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	В	406	PRO	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	D	312	LYS	2.9
1 B 111 LEU 2.9 1 C 173 ASN 2.9 1 B 77 GLN 2.9 1 D 445 GLN 2.9 1 A 165 TRP 2.8 1 C 420 ASP 2.8	1	С	14	THR	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	111	LEU	2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	173	ASN	2.9
1 D 445 GLN 2.9 1 A 165 TRP 2.8 1 C 420 ASP 2.8	1	В	77	GLN	2.9
1 A 165 TRP 2.8 1 C 420 ASP 2.8	1	D	445	GLN	2.9
1 C 420 ASP 2.8	1	А	165	TRP	2.8
	1	С	420	ASP	2.8

Mol	Chain	Res	Type	RSRZ
1	D	3	VAL	2.8
1	А	294	GLU	2.8
1	В	436	GLU	2.8
1	В	128	LYS	2.8
1	С	472	LYS	2.8
1	А	236	THR	2.8
1	В	302	THR	2.8
1	С	180	LEU	2.8
1	D	220	LEU	2.8
1	А	101	ASN	2.8
1	А	258	ILE	2.8
1	D	2	ILE	2.8
1	D	256	ILE	2.8
1	D	298	ILE	2.8
1	А	177	SER	2.8
1	D	155	SER	2.8
1	В	190	TYR	2.8
1	В	362	PHE	2.8
1	С	449	ASP	2.8
1	В	441	GLU	2.8
1	С	187	ARG	2.8
1	В	108	LEU	2.8
1	D	398	LEU	2.8
1	А	82	ILE	2.8
1	А	473	ILE	2.8
1	D	156	ASP	2.8
1	В	48	PHE	2.8
1	D	300	LYS	2.8
1	D	453	PHE	2.8
1	С	81	CYS	2.8
1	D	360	ALA	2.8
1	А	238	THR	2.8
1	A	314	LEU	2.8
1	C	73	LEU	2.8
1	B	173	ASN	2.8
1	D	26	ASN	2.8
1	D	214	ASN	2.8
1	B	59	ARG	2.8
1	B	89	PRO	2.8
1	A	159[A]	TRP	2.8
1	B	404	ALA	2.8
1	C	194		2.0

Mol	Chain	Res	Type	RSRZ
1	D	122	ALA	2.8
1	В	221	HIS	2.8
1	С	340	LEU	2.8
1	D	459	LEU	2.8
1	А	297	ASN	2.8
1	В	26	ASN	2.8
1	А	276	ILE	2.7
1	D	46	ILE	2.7
1	С	184	LYS	2.7
1	С	294	GLU	2.7
1	А	271	PRO	2.7
1	С	271	PRO	2.7
1	А	310	PHE	2.7
1	А	346	TYR	2.7
1	А	282	VAL	2.7
1	А	181	THR	2.7
1	А	126	LEU	2.7
1	D	212	ASN	2.7
1	А	219	LYS	2.7
1	В	333	ILE	2.7
1	В	336	ARG	2.7
1	С	200	SER	2.7
1	С	306	GLU	2.7
1	В	461	PRO	2.7
1	А	320	TYR	2.7
1	С	205	VAL	2.7
1	D	87	GLY	2.7
1	А	106	CYS	2.7
1	А	272	THR	2.7
1	D	313	THR	2.7
1	А	180	LEU	2.7
1	А	370	LEU	2.7
1	В	33	LEU	2.7
1	С	254	LYS	2.7
1	В	214	ASN	2.7
1	В	306	GLU	2.7
1	В	446	ARG	2.7
1	В	155	SER	2.7
1	В	202	SER	2.7
1	В	434	PRO	2.7
1	С	335	ASP	2.7
1	D	67	ASP	2.7

Mol

1 1

1

1

1

1

1

В	463	LYS	2.7	
С	308	LYS	2.7	
D	146	CYS	2.7	
А	130	ARG	2.7	
D	187	ARG	2.7	
А	256	ILE	2.7	
А	384	ILE	2.7	
С	177	SER	2.7	
С	252	SER	2.7	
В	50	ASP	2.7	
D	286	ASP	2.7	
А	232	VAL	2.7	
С	206	VAL	2.7	
D	292	VAL	2.7	
С	64	ALA	2.7	
С	105	LYS	2.7	
В	144	GLY	2.6	
А	318	ARG	2.6	
В	133	ARG	2.6	
В	295	LEU	2.6	
С	163	GLU	2.6	
D	199	GLU	2.6	
В	276	ILE	2.6	
С	129	SER	2.6	
A	34	ASP	2.6	
D	71	ASP	2.6	
D	60	ALA	2.6	

 $Continued \ from \ previous \ page...$

Res

365

91

178

52

176

412

Type

ASP

VAL

PHE

VAL

TYR

ALA

RSRZ

2.7

2.7

2.7

2.7

2.7

2.7

Chain

D

А

А

В

С

В

D

В

А

В

С

С

С

D

А

1

1

1

1

1

1

1

1

1

210

382

377

218

12

236

386

20

194

ASN Continued on next page...

ALA

TYR

THR

LEU

THR

THR

GLU

LEU

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

Conti	Continued from previous page					
Mol	Chain	Res	Type	RSRZ		
1	А	431	ILE	2.6		
1	D	82	ILE	2.6		
1	В	326	SER	2.6		
1	D	21	PRO	2.6		
1	D	89	PRO	2.6		
1	D	49	ASP	2.6		
1	А	339	HIS	2.6		
1	В	222	GLN	2.6		
1	С	119	HIS	2.6		
1	D	375	LYS	2.6		
1	А	175	VAL	2.6		
1	В	74	ARG	2.6		
1	С	6	VAL	2.6		
1	D	37	VAL	2.6		
1	А	399	GLY	2.6		
1	С	18	GLY	2.6		
1	С	198	GLY	2.6		
1	С	319	GLU	2.6		
1	В	97	LEU	2.6		
1	В	377	THR	2.6		
1	С	391	THR	2.6		
1	D	53	THR	2.6		
1	С	162	ASN	2.6		
1	А	94	TRP	2.6		
1	В	106	CYS	2.6		
1	В	143	PRO	2.6		
1	D	287	SER	2.6		
1	А	395	GLN	2.6		
1	В	22	GLN	2.6		
1	А	278[A]	ARG	2.6		
1	С	368	ARG	2.6		
1	С	447	ARG	2.6		
1	А	245	VAL	2.6		
1	D	43	GLY	2.6		
1	D	61	PHE	2.6		
1	В	209	ALA	2.6		
1	А	391	THR	2.6		
1	В	460	THR	2.6		
1	С	211	THR	2.6		
1	В	203	ASN	2.6		
1	A	434	PRO	2.6		
1	В	258	ILE	2.6		

Mol	Chain	Res	Type	RSRZ
1	D	383	ASP	2.6
1	А	366	ARG	2.6
1	А	206	VAL	2.5
1	А	273	ALA	2.5
1	D	64	ALA	2.5
1	D	364	VAL	2.5
1	А	153	LEU	2.5
1	С	220	LEU	2.5
1	С	432	LEU	2.5
1	D	380	LEU	2.5
1	С	323	ASN	2.5
1	В	168	TYR	2.5
1	В	472	LYS	2.5
1	А	326	SER	2.5
1	А	344	ASP	2.5
1	В	56	ASP	2.5
1	В	67	ASP	2.5
1	С	286	ASP	2.5
1	D	167	ASP	2.5
1	А	6	VAL	2.5
1	А	124	ALA	2.5
1	В	282	VAL	2.5
1	С	245	VAL	2.5
1	А	340	LEU	2.5
1	С	123	LEU	2.5
1	D	111	LEU	2.5
1	А	435	ASN	2.5
1	В	290	LYS	2.5
1	D	69	ILE	2.5
1	D	74	ARG	2.5
1	В	85	SER	2.5
1	D	202	SER	2.5
1	А	71[A]	ASP	2.5
1	А	296	ASP	2.5
1	В	296	ASP	2.5
1	В	381	ASP	2.5
1	С	149	ASP	2.5
1	В	294	GLU	2.5
1	В	224	GLY	2.5
1	D	361	GLY	2.5
1	С	99	PHE	2.5
1	А	32	LYS	2.5

Continued from previous page...

Continued from previous page...MolChainResTypeRSRZ

			01	
1	А	358	LEU	2.5
1	А	467	LYS	2.5
1	В	72	LYS	2.5
1	В	293	LYS	2.5
1	В	430	LYS	2.5
1	С	234	LYS	2.5
1	D	180	LEU	2.5
1	D	246	LEU	2.5
1	D	308	LYS	2.5
1	С	302	THR	2.5
1	D	397	ASN	2.5
1	А	450	ARG	2.5
1	С	196	TYR	2.5
1	C	276	ILE	2.5
1	А	85	SER	2.5
1	А	195	SER	2.5
1	А	252	SER	2.5
1	А	287	SER	2.5
1	С	25	GLU	2.5
1	D	144	GLY	2.5
1	D	466	GLY	2.5
1	С	471	LYS	2.5
1	А	209	ALA	2.5
1	С	462	ALA	2.5
1	А	133	ARG	2.5
1	А	281	GLN	2.5
1	D	45	TYR	2.4
1	А	56	ASP	2.4
1	В	71	ASP	2.4
1	D	182	GLY	2.4
1	В	210	ALA	2.4
1	В	99	PHE	2.4
1	В	151	LEU	2.4
1	В	453	PHE	2.4
1	С	24	LEU	2.4
1	D	108	LEU	2.4
1	A	89	PRO	2.4
1	В	107	PRO	2.4
1	C	434	PRO	2.4
1	D	17	TYR	2.4
1	A	449	ASP	2.4
1	В	365	ASP	2.4

6ZTH

Mol	Chain	Res	Type	RSRZ
1	С	132	GLY	2.4
1	D	174	GLY	2.4
1	С	84	HIS	2.4
1	А	59	ARG	2.4
1	С	94	TRP	2.4
1	С	165	TRP	2.4
1	С	277	LEU	2.4
1	С	303	GLN	2.4
1	С	380	LEU	2.4
1	А	255	ASN	2.4
1	С	397	ASN	2.4
1	А	269	THR	2.4
1	D	197	THR	2.4
1	А	461	PRO	2.4
1	С	116	PRO	2.4
1	В	319	GLU	2.4
1	В	321	ILE	2.4
1	С	259	ILE	2.4
1	А	382	TYR	2.4
1	С	45	TYR	2.4
1	С	283	LYS	2.4
1	D	38	GLY	2.4
1	А	207	ARG	2.4
1	С	331	ARG	2.4
1	А	20	LEU	2.4
1	А	280	LEU	2.4
1	А	398	LEU	2.4
1	В	64	ALA	2.4
1	В	115	ALA	2.4
1	В	220	LEU	2.4
1	В	291	LEU	2.4
1	С	233	ALA	2.4
1	С	345	LEU	2.4
1	С	347	LEU	2.4
1	D	209	ALA	2.4
1	A	438	VAL	2.4
1	В	175	VAL	2.4
1	С	194	ASN	2.4
1	D	179	VAL	2.4
1	D	297	ASN	2.4
1	D	362	PHE	2.4
1	В	223	GLU	2.4

1 1 RSRZ

2.4

2.4

S	2.4	
U	2.4	
Ν	2.4	
Ν	2.4	
Ν	2.4	
А	2.4	
S	2.4	
Ν	2.4	
Ν	2.4	

Continued from previous page... Mol Chain Type

В

С

 Res

274

158

ILE

SER

1	А	335	ASP	2.4
1	С	41	TYR	2.4
1	А	22	GLN	2.4
1	В	303	GLN	2.4
1	А	146	CYS	2.4
1	В	148	LEU	2.4
1	В	305	ASN	2.4
1	С	203	ASN	2.4
1	С	266	ASN	2.4
1	С	360	ALA	2.4
1	D	81	CYS	2.4
1	D	203	ASN	2.4
1	D	289	ASN	2.4
1	А	54	VAL	2.3
1	А	364	VAL	2.3
1	D	319	GLU	2.3
1	D	359	PRO	2.3
1	В	112	ILE	2.3
1	В	149	ASP	2.3
1	D	186	ASP	2.3
1	А	325	TYR	2.3
1	D	382	TYR	2.3
1	А	201	GLY	2.3
1	В	38	GLY	2.3
1	С	201	GLY	2.3
1	D	18	GLY	2.3
1	D	63	GLN	2.3
1	А	131	LEU	2.3
1	А	277	LEU	2.3
1	А	376	LEU	2.3
1	С	460	THR	2.3
1	D	79	PHE	2.3
1	А	90	ILE	2.3
1	А	446	ARG	2.3
1	В	335	ASP	2.3
1	С	156	ASP	2.3
1	С	167	ASP	2.3
1	В	337	GLY	2.3
1	С	356	GLN	2.3
1	D	41	TYR	2.3

Mol	Chain	Res	Type	RSRZ
1	А	359	PRO	2.3
1	В	11	VAL	2.3
1	С	37	VAL	2.3
1	В	61	PHE	2.3
1	В	238	THR	2.3
1	С	106	CYS	2.3
1	С	207	ARG	2.3
1	А	259	ILE	2.3
1	В	250	SER	2.3
1	В	473	ILE	2.3
1	А	303	GLN	2.3
1	С	387	GLY	2.3
1	А	471	LYS	2.3
1	В	249	LEU	2.3
1	С	372	ASN	2.3
1	D	305	ASN	2.3
1	С	60	ALA	2.3
1	С	209	ALA	2.3
1	D	11	VAL	2.3
1	D	282	VAL	2.3
1	В	318	ARG	2.3
1	А	188	GLN	2.3
1	С	367	GLN	2.3
1	D	188	GLN	2.3
1	D	224	GLY	2.3
1	С	168	TYR	2.2
1	С	111	LEU	2.2
1	А	437	THR	2.2
1	D	468	PRO	2.2
1	В	231	VAL	2.2
1	В	401	ARG	2.2
1	С	292	VAL	2.2
1	D	401	ARG	2.2
1	В	367	GLN	2.2
1	A	62	ASP	2.2
1	D	34	ASP	2.2
1	A	328	ILE	2.2
1	C	274	ILE	2.2
1	D	407	GLU	2.2
1	A	371	ASN	2.2
1	В	73	LEU	2.2
1	C C	249	LEU	2.2

Mol	Chain	Res	Type	RSRZ
1	А	60	ALA	2.2
1	А	404	ALA	2.2
1	В	116	PRO	2.2
1	В	278	ARG	2.2
1	С	242	ALA	2.2
1	D	80	ALA	2.2
1	D	450	ARG	2.2
1	В	16	THR	2.2
1	С	251	HIS	2.2
1	D	27	GLN	2.2
1	D	77	GLN	2.2
1	А	202	SER	2.2
1	А	472	LYS	2.2
1	С	55	ASP	2.2
1	В	18	GLY	2.2
1	С	120	GLY	2.2
1	С	244	GLY	2.2
1	В	25	GLU	2.2
1	D	294	GLU	2.2
1	D	355	GLU	2.2
1	А	418	LEU	2.2
1	D	462	ALA	2.2
1	С	317	THR	2.2
1	А	48	PHE	2.2
1	С	183	GLN	2.2
1	В	105	LYS	2.2
1	В	47	SER	2.2
1	D	474	ASP	2.2
1	В	256	ILE	2.2
1	С	256	ILE	2.2
1	С	321	ILE	2.2
1	D	301	GLU	2.2
1	А	417	ARG	2.2
1	D	280	LEU	2.2
1	A	215	TYR	2.2
1	A	270	HIS	2.2
1	В	45	TYR	2.2
1	С	7	HIS	2.2
1	В	242	ALA	2.2
1	В	469	THR	2.2
1	D	211	THR	2.2
1	А	254	LYS	2.2

Continued from previous page...

Mol Chain

1	D	105	LYS	2.2	
1	А	474	ASP	2.2	
1	В	62	ASP	2.2	
1	В	383	ASP	2.2	
1	В	195	SER	2.1	
1	А	4	ILE	2.1	
1	А	198	GLY	2.1	
1	С	407	GLU	2.1	
1	D	170	CYS	2.1	
1	А	373	ARG	2.1	
1	А	42	LEU	2.1	
1	С	110	HIS	2.1	
1	D	251	HIS	2.1	
1	А	80	ALA	2.1	
1	А	12	THR	2.1	
1	А	469	THR	2.1	
1	С	83	THR	2.1	
1	А	79	PHE	2.1	
1	D	441	GLU	2.1	
1	В	4	ILE	2.1	
1	В	66	ARG	2.1	
1	С	278	ARG	2.1	
1	С	307	HIS	2.1	
1	А	39	ASN	2.1	
1	D	358	LEU	2.1	
1	С	247	PRO	2.1	
1	А	125	GLN	2.1	
1	С	145	LYS	2.1	
1	D	22	GLN	2.1	
1	D	222	GLN	2.1	
1	В	70	ALA	2.1	
1	А	453	PHE	2.1	
1	А	237	ARG	2.1	
1	С	56	ASP	2.1	
1	D	96	ASP	2.1	
1	С	250	SER	2.1	
1	С	388	GLY	2.1	
1	D	250	SER	2.1	
1	D	417	ARG	2.1	

Continued from previous page...

Res

Type

RSRZ

ILE Continued on next page...

ILE

ILE

2.1

2.1

2.1

321

389

46

А

А

В

1

1

1

Continued from previous page						
Mol	Chain	\mathbf{Res}	Type	RSRZ		
1	С	455	ILE	2.1		
1	D	35	ILE	2.1		
1	В	119	HIS	2.1		
1	В	403	LYS	2.1		
1	В	418	LEU	2.1		
1	В	457	ASN	2.1		
1	D	393	LYS	2.1		
1	D	457	ASN	2.1		
1	А	468	PRO	2.1		
1	С	240	PRO	2.1		
1	С	210	ALA	2.1		
1	D	70	ALA	2.1		
1	А	98	TYR	2.1		
1	D	288	TYR	2.1		
1	D	5	PHE	2.1		
1	В	470	GLY	2.1		
1	D	201	GLY	2.1		
1	А	274	ILE	2.1		
1	А	234	LYS	2.1		
1	В	308	LYS	2.1		
1	С	29	LYS	2.1		
1	D	93	LYS	2.1		
1	А	107	PRO	2.1		
1	А	220	LEU	2.1		
1	В	217	LEU	2.1		
1	С	246	LEU	2.1		
1	D	33	LEU	2.1		
1	А	360	ALA	2.1		
1	В	14	THR	2.1		
1	В	122	ALA	2.1		
1	С	58	ALA	2.1		
1	D	263	THR	2.1		
1	A	405	TYR	2.0		
1	A	452	VAL	2.0		
1	С	382	TYR	2.0		
1	D	127	GLY	2.0		
1	С	13	HIS	2.0		
1	С	433	HIS	2.0		
1	D	110	HIS	2.0		
1	А	283	LYS	2.0		
1	В	134	ILE	2.0		
1	С	352	GLN	2.0		

352GLN2.0Continued on next page...

Mol	Chain	Res	Type	RSRZ
1	В	153	LEU	2.0
1	D	277	LEU	2.0
1	В	215	TYR	2.0
1	А	248	GLY	2.0
1	В	156	ASP	2.0
1	D	178	PHE	2.0
1	В	234	LYS	2.0
1	В	408	SER	2.0
1	С	326	SER	2.0
1	С	20	LEU	2.0
1	С	255	ASN	2.0
1	С	338	ASN	2.0
1	С	279	CYS	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q < 0.9
2	NAD	D	501	44/44	0.57	0.30	23,48,62,69	70
2	NAD	D	502	44/44	0.61	0.33	22,34,44,53	70
2	NAD	А	501	44/44	0.63	0.23	$22,\!38,\!52,\!55$	0
2	NAD	С	501	44/44	0.69	0.27	15,30,43,49	70
2	NAD	В	601	44/44	0.72	0.23	$21,\!38,\!51,\!57$	70
2	NAD	В	602	44/44	0.74	0.23	10,28,39,46	0
2	NAD	А	502	44/44	0.76	0.20	18,31,45,55	70
2	NAD	С	502	44/44	0.86	0.16	6,24,34,41	0

The following is a graphical depiction of the model fit to experimental electron density of all

instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

