

Full wwPDB X-ray Structure Validation Report (i)

Nov 2, 2024 – 01:23 PM EDT

PDB ID	:	6NNJ
Title	:	Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound
		to CH31 scFv in Complex with Crystallization Chaperones 3H109L Fab and
		35O22 scFv at 3.1 Angstrom
Authors	:	Lai, YT.; Kwong, P.D.
Deposited on	:	2019-01-15
Resolution	:	2.60 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	164625	3775 (2.60-2.60)
Clashscore	180529	4181 (2.60-2.60)
Ramachandran outliers	177936	4129 (2.60-2.60)
Sidechain outliers	177891	4129 (2.60-2.60)
RSRZ outliers	164620	3775 (2.60-2.60)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain							
1	В	153	9%	14% 17%						
		100	54%							
2	D	153	60%	22% • 16%						
			49%							
3	\mathbf{E}	130	69%	15% 15%						
			10%							
4	G	481	67%	21% • 11%						
			33%							
5	Н	244	73%	18% • 7%						

Mol	Chain	Length	Quality of cha	ain
6	L	217	74%	21% ••
7	U	137	72%	8% • 6%
8	V	117	77%	10% 14%
9	А	6	33% 17%	50%
10	С	2	100%	
10	J	2	50%	50%
10	K	2	100%	
10	М	2	100%	
10	0	2	50%	50%
11	F	5	60%	40%
12	Ι	4	50%	50%
13	N	10	20% 60%	20%

2 Entry composition (i)

There are 14 unique types of molecules in this entry. The entry contains 11874 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Envelope glycoprotein gp41.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	В	127	Total 1009	C 641	N 173	0 189	S 6	0	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	559	PRO	ILE	engineered mutation	UNP Q2N0S6
В	605	CYS	THR	engineered mutation	UNP Q2N0S6

• Molecule 2 is a protein called 35O22 scFv heavy chain.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
2	D	128	Total 994	C 628	N 169	0 192	${ m S}{ m 5}$	0	0	0

• Molecule 3 is a protein called 35O22 scFv light chain.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
3	Е	110	Total 836	C 525	N 138	O 167	S 6	0	0	0

• Molecule 4 is a protein called Envelope glycoprotein gp120.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
4	G	430	Total 3397	C 2140	N 602	0 628	S 27	0	0	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	145	ALA	ASN	engineered mutation	UNP Q2N0S6
G	332	ASN	THR	engineered mutation	UNP Q2N0S6

Chain	Residue	Modelled	Actual	Comment	Reference
G	501	CYS	ALA	engineered mutation	UNP Q2N0S6
G	509	ARG	-	expression tag	UNP Q2N0S6
G	510	ARG	-	expression tag	UNP Q2N0S6
G	511	ARG	-	expression tag	UNP Q2N0S6
G	512	ARG	-	expression tag	UNP Q2N0S6
G	513	ARG	-	expression tag	UNP Q2N0S6

• Molecule 5 is a protein called 3H109L Fab heavy chain.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
5	Н	226	Total 1715	C 1093	N 278	0 338	S 6	0	0	0

• Molecule 6 is a protein called 3H109L Fab light chain.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
6	L	210	Total 1598	C 1006	N 275	O 310	${f S}{7}$	0	0	0

• Molecule 7 is a protein called CH31 scFv heavy chain.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
7	U	129	Total 1027	C 652	N 184	0 187	$\frac{S}{4}$	0	0	0

• Molecule 8 is a protein called CH31 scFv light chain.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
8	V	101	Total 761	С 472	N 130	0 156	${ m S} { m 3}$	0	0	0

• Molecule 9 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
9	А	6	Total 72	C 40	N 2	O 30	0	0	0

• Molecule 10 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
10	С	9	Total	С	Ν	0	0	0	0
10	U	2	28	16	2	10	0	0	0
10	Т	9	Total	С	Ν	0	0	0	0
10	J	2	28	16	2	10	0	0	0
10	K	9	Total	С	Ν	0	0	0	0
10	IX	2	28	16	2	10	0	0	0
10	М	0	Total	С	Ν	0	0	0	0
10	111	2	28	16	2	10	0	0	0
10	0	2	Total	С	Ν	0	0	0	0
	0	2	28	16	2	10	0	0	U

• Molecule 11 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyra nose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
11	F	5	Total 61	C 34	N 2	O 25	0	0	0

• Molecule 12 is an oligosaccharide called alpha-D-mannopyranose-(1-6)-beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glu copyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
12	Ι	4	Total 50	C 28	N 2	O 20	0	0	0

• Molecule 13 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyr anose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyr anose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace		
13	Ν	10	Total 116	С 64	N 2	O 50	0	0	0

• Molecule 14 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
14	В	1	Total C N O 14 8 1 5	0	0
14	В	1	Total C N O 14 8 1 5	0	0
14	G	1	Total C N O 14 8 1 5	0	0

Continued on next page...

DWIDE

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
14	С	1	Total C N C) 0	0
14	G	L	14 8 1 5		0
14	С	1	Total C N C)	0
14	G	I	14 8 1 5		0
14	С	1	Total C N C) 0	0
14	G	I	14 8 1 5		0
14	С	1	Total C N C) 0	0
14	9		14 8 1 5		

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Envelope glycoprotein gp41

• Molecule 4: Envelope glycoprotein gp120

	72%	
Chain U:	85%	8% • 6%
GLN V2 V2 V5 V5 V5 V5 V5 A10 A10 V111 V111 K12 K12	P14 G15 A16 A16 A16 A16 F24 F24 F24 F24 F26 F26 F26 F26 F26 F26 F26 F26 F26 F26	C 42 C 42 C 42 C 44 C 44 C 44 C 44 C 44
L63 N64 G65 R65 R65 R65 A69 A69 A71 D72 D72 D72 T76	T77 T77 T77 F79 E81 V82 883 884 884 185 185 186 186 186 186 186 186 188 187 787 791 787 791 793 793 793 793 793 793 793 793 793 793	A1000 71008 0103 0104 0105 0105 0105 7107 7107 7107 7107 7105 7105
V AL PRO ARG		
• Molecule 8: CH	31 scFv light chain	
	77%	-
Chain V:	76%	10% 14%
D1 12 13 14 15 15 15 15 15 15 11 11 12 11 12 11 12 12 12	L15 L15 L15 L15 L15 L15 L21 L21 L22 L23 L23 L23 L23 L23 L23 L23 L23 L23	R44 F45 L47 L47 R48 R48 B50 B56 G55 G55 G55 G55 G55 G55 G55 G55 G55 G
F62 S63 G664 G665 F67 H68 H68 N/T0 R71 F71 F71 F71	775 876 877 179 180 181 183 183 183 183 183 183 183 183 183	SER GLY GLY GLY SER SER GLY SER SER

 $\label{eq:mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]} beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2$

Chain A:	33%	17%	50%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN6			

• Molecule 10: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain	С

100%

NAG1 NAG2

• Molecule 10: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glu copyranose

Chain J: 50% 50%

NAG1 NAG2

• Molecule 10: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K:		100%		
NAG2 NAG2				
• Molecule 10: 2 copyranose	-acetamido-2-deoxy-b	eta-D-glucopyranose-(1-	-4)-2-acetamido-2-deoxy-beta	,-D-glu
Chain M:		100%		
NAG1 NAG2				
• Molecule 10: 2 copyranose	-acetamido-2-deoxy-b	eta-D-glucopyranose-(1-	-4)-2-acetamido-2-deoxy-beta	-D-glu
Chain O:	50%	50%		
NAG2 NAG2				
• Molecule 11: a ose-(1-4)-2-aceta nose	lpha-D-mannopyranos mido-2-deoxy-beta-D-	se-(1-3)-[alpha-D-manno glucopyranose-(1-4)-2-ao	pyranose-(1-6)]beta-D-manno cetamido-2-deoxy-beta-D-gluo	opyran copyra
Chain F:	60%	40'	%	
NAG1 NAC2 BMA3 MAN5 MAN5 MAN5				
• Molecule 12: a beta-D-glucopyra	lpha-D-mannopyranos anose-(1-4)-2-acetamic	se-(1-6)-beta-D-mannop lo-2-deoxy-beta-D-gluco	yranose-(1-4)-2-acetamido-2-opyranose	deoxy-
Chain I:	50%	50%		
NAG1 NAC2 BMA3 MAN4 MAN4				
• Molecule 13 [.] a	lpha-D-mannopyrano	se-(1-2)-alpha-D-manno	pyranose-(1-2)-alpha-D-man	nonvra

• Molecule 13: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-2)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	P 63	Depositor	
Cell constants	132.15Å 132.15 Å 315.95 Å	Deperitor	
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor	
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	43.26 - 2.60	Depositor	
Resolution (A)	43.26 - 2.60	EDS	
% Data completeness	41.7 (43.26-2.60)	Depositor	
(in resolution range)	41.7 (43.26-2.60)	EDS	
R_{merge}	0.09	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	$1.54 (at 2.58 \text{\AA})$	Xtriage	
Refinement program	PHENIX 1.14_3260	Depositor	
P. P.	0.248 , 0.293	Depositor	
n, n_{free}	0.248 , 0.293	DCC	
R_{free} test set	93476 reflections $(4.99%)$	wwPDB-VP	
Wilson B-factor $(Å^2)$	31.5	Xtriage	
Anisotropy	0.107	Xtriage	
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.31, 34.6	EDS	
L-test for $twinning^2$	$< L >=0.50, < L^2>=0.33$	Xtriage	
Estimated twinning fraction	0.048 for h,-h-k,-l	Xtriage	
F_o, F_c correlation	0.82	EDS	
Total number of atoms	11874	wwPDB-VP	
Average B, all atoms $(Å^2)$	55.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.01% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MAN, BMA, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	В	0.25	0/1027	0.39	0/1393	
2	D	0.25	0/1021	0.48	0/1390	
3	Е	0.25	0/860	0.42	0/1175	
4	G	0.27	0/3467	0.47	0/4702	
5	Н	0.26	0/1758	0.46	0/2397	
6	L	0.25	0/1641	0.45	0/2239	
7	U	0.24	0/1059	0.43	0/1447	
8	V	0.25	0/774	0.46	0/1045	
All	All	0.25	0/11607	0.45	0/15788	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	1009	0	994	16	0
2	D	994	0	953	20	0
3	Е	836	0	785	8	0
4	G	3397	0	3349	73	0
5	Н	1715	0	1685	30	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
6	L	1598	0	1548	27	0
7	U	1027	0	973	4	0
8	V	761	0	735	7	0
9	А	72	0	61	4	0
10	С	28	0	25	0	0
10	J	28	0	25	2	0
10	K	28	0	25	0	0
10	М	28	0	25	0	0
10	0	28	0	25	0	0
11	F	61	0	52	0	0
12	Ι	50	0	43	1	0
13	N	116	0	97	2	0
14	В	28	0	26	0	0
14	G	70	0	65	0	0
All	All	11874	0	11491	176	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (176)	close	$\operatorname{contacts}$	within	the	same	$\operatorname{asymmetric}$	unit	are	listed	below,	sorted	by	their	clash
magnitud	e.													

Atom-1 Atom-2		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:H:59:TYR:HB2	5:H:64:LYS:HD2	1.56	0.87
4:G:230:ASP:HB3	4:G:233:PHE:HB2	1.62	0.81
4:G:475:MET:SD	4:G:478:ASN:ND2	2.55	0.78
4:G:358:ILE:HG22	4:G:396:ILE:HA	1.68	0.73
4:G:259:LEU:HD23	4:G:449:ILE:HG21	1.70	0.72
1:B:605:CYS:HA	4:G:37:THR:HG22	1.72	0.72
4:G:271:MET:HB3	4:G:273:ARG:HE	1.56	0.71
4:G:292:VAL:HG13	4:G:449:ILE:HG13	1.74	0.69
5:H:35:SER:OG	5:H:47:TRP:NE1	2.26	0.69
4:G:360:ARG:HB3	4:G:467:THR:HG22	1.74	0.68
5:H:157:LEU:HD21	5:H:180:VAL:HG11	1.75	0.67
5:H:100:ARG:NH2	13:N:4:MAN:O6	2.27	0.67
4:G:69:TRP:HE1	4:G:108:ILE:HG23	1.59	0.67
4:G:299:PRO:HG2	4:G:327:ARG:HB2	1.76	0.66
4:G:257:THR:HG22	4:G:258:GLN:HG3	1.77	0.66
5:H:35:SER:HG	5:H:47:TRP:HE1	1.41	0.66
4:G:360:ARG:HH11	4:G:467:THR:HG21	1.62	0.64
6:L:50:ASN:O	6:L:52:GLN:N	2.32	0.63
8:V:67:PHE:HZ	10:J:2:NAG:H4	1.63	0.62

6NNJ	
------	--

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:96:LEU:HG	2:D:97:LEU:HG	1.79	0.62
8:V:24:GLN:NE2	8:V:70:ASN:OD1	2.33	0.62
1:B:520:LEU:HB3	1:B:524:GLY:HA3	1.81	0.61
5:H:63:LEU:O	5:H:65:SER:N	2.33	0.61
5:H:92:CYS:O	5:H:102:GLY:N	2.33	0.61
6:L:54:ARG:NH2	6:L:62:PHE:O	2.32	0.60
2:D:50:TRP:HH2	9:A:4:MAN:H62	1.66	0.59
4:G:335:LYS:HB3	4:G:412:ASP:HB3	1.83	0.59
4:G:476:ARG:HA	4:G:479:TRP:CD1	2.39	0.58
7:U:66:ARG:NH2	7:U:86:ASP:OD2	2.37	0.58
5:H:117:PRO:HB3	5:H:143:TYR:HB3	1.86	0.58
5:H:99:LYS:HE2	5:H:100(A):ILE:HD11	1.85	0.57
3:E:37:GLN:HG3	3:E:84:THR:HG21	1.86	0.57
1:B:629:LEU:HD23	4:G:44:VAL:HG23	1.86	0.57
5:H:68:ILE:HG23	5:H:81:LYS:HB2	1.86	0.57
4:G:42:VAL:HG23	4:G:44:VAL:HG12	1.87	0.57
4:G:201:ILE:HD11	4:G:435:TYR:HB2	1.87	0.57
4:G:324:GLY:O	6:L:94:ARG:NH1	2.34	0.56
1:B:585:ARG:NH2	4:G:491:ILE:O	2.36	0.56
9:A:2:NAG:H3	9:A:2:NAG:H83	1.88	0.55
4:G:66:HIS:N	4:G:66:HIS:ND1	2.55	0.55
5:H:195:ASN:ND2	5:H:206:ASP:OD2	2.40	0.54
1:B:519:PHE:HZ	1:B:542:ARG:HH22	1.55	0.54
4:G:350:ARG:NH2	4:G:357:THR:O	2.35	0.54
4:G:286:VAL:HG13	4:G:452:LEU:HB3	1.90	0.54
2:D:35:ASN:ND2	2:D:100(D):TRP:O	2.38	0.53
6:L:8:VAL:HG11	6:L:103:ARG:HE	1.73	0.53
7:U:87:THR:HG23	7:U:110:VAL:HA	1.90	0.53
6:L:35:TRP:CE2	6:L:73:LEU:HB2	2.43	0.53
4:G:102:GLU:OE2	4:G:476:ARG:NH1	2.42	0.52
6:L:34:GLN:HG3	6:L:49:TYR:HA	1.91	0.52
8:V:39:LYS:HG2	8:V:84:ALA:HB2	1.90	0.52
2:D:66:ARG:NH1	2:D:86:ASP:OD2	2.42	0.52
5:H:136:LEU:HD13	5:H:209:VAL:HG21	1.92	0.52
8:V:37:GLN:HB2	8:V:47:LEU:HD11	1.90	0.52
6:L:109:GLN:HB2	6:L:141:TYR:CE1	2.45	0.52
5:H:165:PRO:HG2	6:L:163:THR:HG21	1.91	0.51
6:L:37:GLN:HB2	6:L:47:LEU:HD11	1.92	0.51
2:D:50:TRP:CH2	9:A:4:MAN:H62	2.45	0.51
6:L:124:GLU:N	6:L:124:GLU:OE1	2.43	0.51
4:G:257:THR:HG21	4:G:370:GLU:O	2.11	0.51

OTATAD	6NNJ	
--------	------	--

A 4 1			Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
6:L:28:LEU:HB2	6:L:94:ARG:HB2	1.93	0.51	
6:L:14:ALA:HB3	6:L:17:GLU:HG3	1.92	0.51	
8:V:67:PHE:CZ	10:J:2:NAG:H4	2.46	0.50	
6:L:119:PHE:HB2	6:L:134:VAL:HG13	1.92	0.50	
5:H:142:ASP:OD1	5:H:142:ASP:N	2.43	0.50	
3:E:37:GLN:HB2	3:E:47:ILE:HD11	1.94	0.50	
2:D:48:MET:HG2	2:D:63:PHE:CD2	2.47	0.50	
5:H:4:LEU:HG	5:H:24:VAL:HG23	1.93	0.50	
4:G:69:TRP:HE1	4:G:108:ILE:HD12	1.76	0.49	
4:G:123:THR:N	4:G:124:PRO:HD2	2.28	0.49	
3:E:83:GLU:HG3	3:E:106:VAL:HG12	1.95	0.49	
4:G:112:TRP:CE2	4:G:426:MET:HG2	2.48	0.49	
1:B:571:TRP:CZ2	4:G:111:LEU:HD11	2.48	0.48	
4:G:439:ILE:HB	4:G:443:ILE:HD11	1.95	0.48	
4:G:299:PRO:HA	4:G:442:VAL:HG13	1.94	0.48	
4:G:456:ARG:NH1	4:G:466:GLU:OE2	2.45	0.48	
1:B:569:THR:HG23	1:B:572:GLY:H	1.78	0.48	
4:G:69:TRP:NE1	4:G:108:ILE:HG23	2.27	0.48	
4:G:369:LEU:O	4:G:373:THR:OG1	2.29	0.48	
2:D:32:TYR:CD2	2:D:94:LYS:HE3	2.49	0.48	
6:L:19:ALA:HB3	6:L:75:ILE:HB	1.95	0.48	
6:L:33:VAL:HG12	6:L:51:ASN:OD1	2.14	0.48	
4:G:122:LEU:HD11	4:G:203:GLN:HB2	1.95	0.48	
5:H:103:LYS:N	5:H:103:LYS:HD2	2.29	0.47	
2:D:36:TRP:CZ3	2:D:92:CYS:HB3	2.50	0.47	
4:G:343:GLY:O	4:G:346:VAL:HG12	2.14	0.47	
7:U:93:ALA:HB1	7:U:100(E):TYR:HB3	1.96	0.47	
13:N:1:NAG:H83	13:N:1:NAG:H3	1.96	0.47	
6:L:197:THR:HA	6:L:202:THR:HA	1.98	0.46	
4:G:270:VAL:HG11	4:G:344:LYS:HB3	1.97	0.46	
6:L:83:GLU:OE1	6:L:167:LYS:NZ	2.48	0.46	
2:D:13:LYS:HA	2:D:13:LYS:HD2	1.68	0.46	
2:D:38:ARG:HD2	2:D:46:GLU:HB3	1.97	0.46	
1:B:610:TRP:CD2	4:G:498:PRO:HB3	2.52	0.45	
4:G:105:HIS:CD2	4:G:476:ARG:HH21	2.34	0.45	
5:H:6:GLU:OE1	5:H:6:GLU:N	2.47	0.45	
3:E:27(C):CYS:HA	3:E:28:CYS:HA	1.66	0.45	
4:G:358:ILE:HG13	4:G:465:THR:HG22	1.98	0.45	
4:G:333:VAL:HG21	4:G:390:LEU:HD21	1.97	0.45	
4:G:94:ASN:HB3	4:G:97:LYS:HG2	1.98	0.45	
4:G:54:CYS:SG	4:G:55:ALA:N	2.90	0.45	

OTATAD	6NNJ	
--------	------	--

		Interatomic	Clash	
Atom-1	tom-1 Atom-2		overlap (Å)	
1:B:638:TYR:O	1:B:642:ILE:HG13	2.16	0.45	
4:G:104:MET:O	4:G:108:ILE:HG12	2.17	0.45	
4:G:206:PRO:HD2	4:G:207:LYS:HZ2	1.82	0.45	
1:B:606:THR:OG1	4:G:36:VAL:O	2.33	0.44	
3:E:7:SER:HB2	3:E:22:SER:H	1.83	0.44	
2:D:28:ARG:HG2	2:D:72(H):PHE:O	2.17	0.44	
1:B:574:LYS:HE3	4:G:107:ASP:OD2	2.18	0.44	
6:L:39:ARG:HG2	6:L:84:ALA:HB2	2.00	0.44	
6:L:59:PRO:HB2	6:L:61:ARG:HG2	1.99	0.44	
2:D:30:ASN:HA	2:D:52(A):PRO:HB2	2.00	0.44	
4:G:122:LEU:HB3	4:G:125:LEU:HD12	2.00	0.44	
2:D:59:LEU:HD11	2:D:64:GLN:HA	1.98	0.44	
4:G:164:GLU:OE2	4:G:308:ARG:NH1	2.51	0.44	
5:H:27:GLY:O	5:H:76:ASN:ND2	2.51	0.43	
9:A:4:MAN:H3	9:A:5:MAN:H2	1.68	0.43	
6:L:35:TRP:CD2	6:L:73:LEU:HB2	2.53	0.43	
6:L:83:GLU:HG3	6:L:106:VAL:HG23	1.99	0.43	
4:G:256:SER:OG	4:G:257:THR:N	2.51	0.43	
4:G:391:PHE:CD2	4:G:470:PRO:HG3	2.53	0.43	
6:L:143:GLY:HA3	6:L:173:TYR:CG	2.53	0.43	
4:G:385:CYS:HA	4:G:418:CYS:HA	2.00	0.43	
4:G:86:LEU:HB3	4:G:89:VAL:HG21	2.01	0.43	
5:H:191:THR:HB	5:H:208:LYS:HE2	2.00	0.43	
4:G:234:ASN:OD1	4:G:235:GLY:N	2.52	0.43	
1:B:618:ASN:O	1:B:621:GLU:HG2	2.18	0.43	
3:E:42:ARG:HB3	3:E:43:ALA:H	1.63	0.43	
4:G:206:PRO:HD2	4:G:207:LYS:NZ	2.33	0.43	
4:G:206:PRO:HG3	4:G:318:TYR:CE2	2.54	0.43	
4:G:257:THR:HB	4:G:375:SER:H	1.83	0.43	
4:G:260:LEU:HD12	4:G:451:GLY:HA3	2.00	0.43	
4:G:261:LEU:HD13	12:I:1:NAG:H82	2.00	0.43	
5:H:142:ASP:HB3	5:H:173:LEU:HD22	2.01	0.42	
2:D:6:GLN:H	2:D:105:GLN:NE2	2.17	0.42	
4:G:134:VAL:HG21	4:G:154:LEU:HD12	2.01	0.42	
4:G:359:ILE:HD12	4:G:468:PHE:HE2	1.84	0.42	
4:G:84:ILE:HB	4:G:244:THR:HG23	2.01	0.42	
3:E:78:LEU:HD13	3:E:106:VAL:HG23	2.02	0.42	
5:H:144:PHE:HA	5:H:145:PRO:HA	1.81	0.42	
4:G:66:HIS:O	4:G:208:VAL:HA	2.18	0.42	
5:H:24:VAL:HG12	5:H:76:ASN:HB3	2.02	0.42	
1:B:627:THR:OG1	1:B:630:GLN:HG3	2.19	0.42	

6NNJ

A + a 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:L:36:TYR:CE1	6:L:46:LEU:HD13	2.54	0.42
2:D:36:TRP:HD1	2:D:69:MET:SD	2.42	0.42
2:D:19:LYS:HE3	2:D:79:TYR:HB3	2.02	0.42
4:G:69:TRP:NE1	4:G:108:ILE:HD12	2.33	0.42
5:H:24:VAL:CG1	5:H:76:ASN:HB3	2.50	0.42
4:G:95:MET:SD	4:G:235:GLY:HA2	2.60	0.41
5:H:100(A):ILE:HG21	5:H:100(E):VAL:HG22	2.02	0.41
6:L:47:LEU:O	6:L:48:ILE:HG13	2.20	0.41
8:V:61:ARG:HB2	8:V:76:SER:O	2.20	0.41
3:E:18:SER:HB3	3:E:76:SER:HA	2.03	0.41
4:G:216:HIS:ND1	4:G:248:THR:O	2.49	0.41
5:H:8:GLY:HA3	5:H:20:LEU:HD23	2.01	0.41
5:H:120:PHE:HE2	5:H:141:LYS:HE2	1.84	0.41
6:L:13:VAL:HG21	6:L:78:VAL:HG21	2.03	0.41
1:B:569:THR:OG1	1:B:570:VAL:N	2.53	0.41
2:D:11:THR:HG22	2:D:109:LEU:O	2.21	0.41
2:D:94:LYS:HB3	2:D:102:LEU:HB3	2.03	0.41
2:D:68:ASN:HB2	2:D:81:GLU:HB2	2.02	0.41
4:G:205:CYS:HB3	4:G:207:LYS:HD2	2.02	0.41
4:G:338:TRP:CE2	4:G:390:LEU:HD22	2.56	0.41
1:B:523:LEU:O	4:G:86:LEU:HD22	2.21	0.41
2:D:57:LYS:HE3	2:D:69:MET:HE2	2.03	0.41
4:G:213:ILE:HD13	4:G:213:ILE:HA	1.89	0.41
5:H:91:TYR:CE2	6:L:43:ALA:HA	2.55	0.41
6:L:168:GLN:OE1	6:L:174:ALA:HB2	2.21	0.41
8:V:34:ASN:O	8:V:89:GLN:N	2.54	0.41
4:G:360:ARG:NH1	4:G:467:THR:HG21	2.34	0.40
1:B:574:LYS:NZ	4:G:103:GLN:OE1	2.54	0.40
4:G:295:ASN:O	4:G:331:CYS:HA	2.22	0.40
5:H:47:TRP:CZ2	5:H:100(P):MET:HE1	2.55	0.40
7:U:63:LEU:HD13	7:U:67:VAL:HG21	2.04	0.40
5:H:100:ARG:HA	5:H:100:ARG:HD2	1.86	0.40
4:G:358:ILE:H	4:G:358:ILE:HG12	1.70	0.40
5:H:83:THR:OG1	5:H:84:ALA:N	2.54	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	В	123/153~(80%)	116 (94%)	7 (6%)	0	100	100
2	D	126/153~(82%)	115 (91%)	10 (8%)	1 (1%)	16	34
3	Е	108/130~(83%)	89 (82%)	17 (16%)	2(2%)	6	13
4	G	418/481 (87%)	383~(92%)	31 (7%)	4 (1%)	13	29
5	Н	222/244~(91%)	200 (90%)	18 (8%)	4 (2%)	7	14
6	L	208/217~(96%)	194 (93%)	11 (5%)	3(1%)	9	19
7	U	127/137~(93%)	120 (94%)	4 (3%)	3~(2%)	5	9
8	V	99/117~(85%)	91~(92%)	7 (7%)	1 (1%)	13	29
All	All	1431/1632~(88%)	1308 (91%)	105 (7%)	18 (1%)	10	21

All (18) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
6	L	51	ASN
7	U	31	SER
4	G	427	TRP
6	L	143	GLY
4	G	70	ALA
4	G	275	GLU
5	Н	64	LYS
6	L	152	ASP
3	Ε	8	ALA
3	Е	77	ASP
8	V	68	HIS
4	G	426	MET
5	Н	117	PRO
7	U	28	ASP
7	U	100(E)	TYR
5	Н	124	PRO
2	D	100(F)	PRO

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
5	Н	147	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{n} tiles
1	В	109/129~(84%)	107~(98%)	2(2%)	54	77
2	D	107/115~(93%)	102~(95%)	5 (5%)	22	45
3	Ε	96/113~(85%)	92~(96%)	4 (4%)	25	50
4	G	385/427~(90%)	372~(97%)	13 (3%)	32	58
5	Н	196/212~(92%)	190~(97%)	6 (3%)	35	62
6	L	174/181~(96%)	169~(97%)	5(3%)	37	64
7	U	105/111~(95%)	101~(96%)	4 (4%)	28	54
8	V	84/88~(96%)	84 (100%)	0	100	100
All	All	1256/1376~(91%)	1217 (97%)	39 (3%)	35	62

All (39) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	В	548	ILE
1	В	569	THR
2	D	38	ARG
2	D	68	ASN
2	D	91	PHE
2	D	100(C)	THR
2	D	105	GLN
3	Е	19	VAL
3	Е	68	TYR
3	Е	89	CYS
3	Ε	96	CYS
4	G	54	CYS
4	G	57	ASP
4	G	65	LYS

Mol	Chain	Res	Type
4	G	66	HIS
4	G	154	LEU
4	G	207	LYS
4	G	270	VAL
4	G	286	VAL
4	G	292	VAL
4	G	346	VAL
4	G	432	GLN
4	G	444	ARG
4	G	447	SER
5	Н	100(F)	SER
5	Н	100(P)	MET
5	Н	142	ASP
5	Н	162	HIS
5	Н	203	THR
5	Н	207	LYS
6	L	25	ARG
6	L	54	ARG
6	L	97	SER
6	L	197	THR
6	L	205	LYS
7	U	28	ASP
7	U	29	ASP
7	U	30	TYR
7	U	71	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
8	V	24	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

35 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	\mathbf{ths}	В	ond ang	les
	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
9	NAG	А	1	9,4	$14,\!14,\!15$	0.39	0	$17,\!19,\!21$	0.49	0
9	NAG	А	2	9	$14,\!14,\!15$	0.42	0	$17,\!19,\!21$	1.40	2 (11%)
9	BMA	А	3	9	11,11,12	0.71	0	$15,\!15,\!17$	0.85	0
9	MAN	А	4	9	11,11,12	0.69	0	$15,\!15,\!17$	1.05	2 (13%)
9	MAN	А	5	9	11,11,12	1.66	1 (9%)	$15,\!15,\!17$	1.54	2 (13%)
9	MAN	А	6	9	11,11,12	0.69	0	$15,\!15,\!17$	0.97	2 (13%)
10	NAG	С	1	10,4	14,14,15	0.23	0	17,19,21	0.46	0
10	NAG	С	2	10	14,14,15	0.29	0	17,19,21	0.49	0
11	NAG	F	1	11,4	14,14,15	0.31	0	17,19,21	0.48	0
11	NAG	F	2	11	14,14,15	0.16	0	17,19,21	0.43	0
11	BMA	F	3	11	11,11,12	0.70	0	$15,\!15,\!17$	0.72	0
11	MAN	F	4	11	11,11,12	0.72	0	$15,\!15,\!17$	0.99	2 (13%)
11	MAN	F	5	11	11,11,12	0.75	0	$15,\!15,\!17$	0.98	2 (13%)
12	NAG	Ι	1	12,4	14,14,15	0.35	0	17,19,21	0.49	0
12	NAG	Ι	2	12	14,14,15	0.24	0	17,19,21	0.60	0
12	BMA	Ι	3	12	11,11,12	0.71	0	$15,\!15,\!17$	0.68	0
12	MAN	Ι	4	12	11,11,12	0.75	1 (9%)	$15,\!15,\!17$	1.07	2 (13%)
10	NAG	J	1	10,4	14,14,15	0.34	0	17,19,21	0.39	0
10	NAG	J	2	10	14,14,15	0.37	0	17,19,21	0.46	0
10	NAG	K	1	10,4	14,14,15	0.36	0	17,19,21	0.40	0
10	NAG	K	2	10	14,14,15	0.20	0	17,19,21	0.47	0
10	NAG	М	1	10,4	14,14,15	0.31	0	17,19,21	0.48	0
10	NAG	М	2	10	14,14,15	0.28	0	17,19,21	0.53	0
13	NAG	N	1	13,4	14,14,15	0.29	0	17,19,21	1.59	2 (11%)
13	MAN	N	10	13	11,11,12	1.07	2 (18%)	$15,\!15,\!17$	1.43	3 (20%)
13	NAG	N	2	13	14,14,15	0.52	0	17,19,21	0.48	0
13	BMA	N	3	13	11,11,12	0.99	0	$15,\!15,\!17$	1.00	0
13	MAN	Ν	4	13	11,11,12	0.80	1 (9%)	$15,\!15,\!17$	1.30	1 (6%)
13	MAN	N	5	13	11,11,12	0.75	0	$15,\!15,\!17$	1.11	1 (6%)

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	$_{\rm ths}$	Bond angles		
INIOI	туре	Unain	nes	Res Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
13	MAN	N	6	13	11,11,12	0.88	0	$15,\!15,\!17$	0.88	1 (6%)
13	MAN	Ν	7	13	11,11,12	0.72	0	$15,\!15,\!17$	0.96	2 (13%)
13	MAN	Ν	8	13	11,11,12	0.69	0	$15,\!15,\!17$	0.98	1 (6%)
13	MAN	Ν	9	13	11,11,12	0.87	1 (9%)	$15,\!15,\!17$	1.23	2 (13%)
10	NAG	0	1	10,4	14,14,15	0.88	1 (7%)	17,19,21	1.50	1 (5%)
10	NAG	0	2	10	14,14,15	0.27	0	17,19,21	0.39	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	NAG	А	1	9,4	-	0/6/23/26	0/1/1/1
9	NAG	А	2	9	-	6/6/23/26	0/1/1/1
9	BMA	А	3	9	-	2/2/19/22	0/1/1/1
9	MAN	А	4	9	-	0/2/19/22	0/1/1/1
9	MAN	А	5	9	-	2/2/19/22	0/1/1/1
9	MAN	А	6	9	-	0/2/19/22	0/1/1/1
10	NAG	С	1	10,4	-	0/6/23/26	0/1/1/1
10	NAG	С	2	10	-	2/6/23/26	0/1/1/1
11	NAG	F	1	11,4	-	0/6/23/26	0/1/1/1
11	NAG	F	2	11	-	0/6/23/26	0/1/1/1
11	BMA	F	3	11	-	2/2/19/22	0/1/1/1
11	MAN	\mathbf{F}	4	11	-	2/2/19/22	0/1/1/1
11	MAN	F	5	11	-	2/2/19/22	0/1/1/1
12	NAG	Ι	1	12,4	-	2/6/23/26	0/1/1/1
12	NAG	Ι	2	12	-	2/6/23/26	0/1/1/1
12	BMA	Ι	3	12	-	2/2/19/22	0/1/1/1
12	MAN	Ι	4	12	-	2/2/19/22	0/1/1/1
10	NAG	J	1	10,4	-	2/6/23/26	0/1/1/1
10	NAG	J	2	10	-	2/6/23/26	0/1/1/1
10	NAG	К	1	10,4	-	2/6/23/26	0/1/1/1
10	NAG	Κ	2	10	-	0/6/23/26	0/1/1/1
10	NAG	М	1	10,4	-	1/6/23/26	0/1/1/1
10	NAG	М	2	10	_	$0/6/23/2\overline{6}$	0/1/1/1
13	NAG	Ν	1	13,4	-	6/6/23/26	0/1/1/1
13	MAN	Ν	10	13	-	0/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	NAG	Ν	2	13	-	2/6/23/26	0/1/1/1
13	BMA	N	3	13	-	0/2/19/22	0/1/1/1
13	MAN	Ν	4	13	-	2/2/19/22	0/1/1/1
13	MAN	N	5	13	-	0/2/19/22	0/1/1/1
13	MAN	N	6	13	-	0/2/19/22	0/1/1/1
13	MAN	N	7	13	-	0/2/19/22	0/1/1/1
13	MAN	N	8	13	-	0/2/19/22	0/1/1/1
13	MAN	N	9	13	-	0/2/19/22	0/1/1/1
10	NAG	0	1	10,4	-	4/6/23/26	0/1/1/1
10	NAG	Ο	2	10	-	2/6/23/26	0/1/1/1

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	А	5	MAN	C1-C2	4.83	1.63	1.52
10	0	1	NAG	O5-C1	3.17	1.49	1.43
13	N	9	MAN	C1-C2	2.38	1.57	1.52
13	N	10	MAN	C1-C2	2.31	1.57	1.52
12	Ι	4	MAN	C1-C2	2.17	1.57	1.52
13	Ν	10	MAN	C2-C3	2.02	1.55	1.52
13	Ν	4	MAN	C1-C2	2.01	1.57	1.52

All (28) bond angle outliers are listed below	N:
---	----

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
10	0	1	NAG	C1-O5-C5	5.80	119.96	112.19
13	Ν	1	NAG	C2-N2-C7	5.01	129.61	122.90
9	А	2	NAG	C2-N2-C7	4.66	129.14	122.90
13	Ν	4	MAN	C1-O5-C5	3.88	117.39	112.19
9	А	5	MAN	C1-C2-C3	3.86	115.27	109.64
13	Ν	9	MAN	C1-O5-C5	3.43	116.79	112.19
9	А	5	MAN	C1-O5-C5	3.33	116.65	112.19
13	Ν	5	MAN	C1-O5-C5	3.07	116.30	112.19
13	Ν	10	MAN	C1-C2-C3	3.00	114.01	109.64
13	Ν	1	NAG	C1-C2-N2	2.87	114.95	110.43
12	Ι	4	MAN	C1-O5-C5	2.66	115.75	112.19
9	А	4	MAN	C1-O5-C5	2.54	115.59	112.19
9	А	6	MAN	C1-O5-C5	2.42	115.43	112.19
9	А	6	MAN	O2-C2-C3	-2.39	105.20	110.15
13	Ν	8	MAN	C1-O5-C5	2.34	115.32	112.19
11	F	5	MAN	C1-O5-C5	2.32	115.29	112.19

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
13	Ν	10	MAN	C1-O5-C5	2.30	115.27	112.19
13	Ν	9	MAN	O2-C2-C3	-2.26	105.48	110.15
13	Ν	10	MAN	O2-C2-C3	-2.23	105.53	110.15
13	Ν	7	MAN	O2-C2-C3	-2.22	105.55	110.15
9	А	2	NAG	C1-C2-N2	2.18	113.87	110.43
13	Ν	6	MAN	O2-C2-C3	-2.15	105.71	110.15
13	Ν	7	MAN	C1-O5-C5	2.08	114.97	112.19
11	F	4	MAN	O2-C2-C3	-2.06	105.88	110.15
12	Ι	4	MAN	O2-C2-C3	-2.06	105.89	110.15
11	F	4	MAN	C1-O5-C5	2.05	114.94	112.19
9	А	4	MAN	O2-C2-C3	-2.04	105.92	110.15
11	F	5	MAN	O2-C2-C3	-2.04	105.93	110.15

There are no chirality outliers.

All	(49)	$\operatorname{torsion}$	outliers	are	listed	below:

Mol	Chain	Res	Type	Atoms
10	0	2	NAG	O5-C5-C6-O6
12	Ι	2	NAG	O5-C5-C6-O6
9	А	3	BMA	O5-C5-C6-O6
10	Κ	1	NAG	O5-C5-C6-O6
12	Ι	1	NAG	O5-C5-C6-O6
10	0	1	NAG	C4-C5-C6-O6
9	А	3	BMA	C4-C5-C6-O6
11	F	3	BMA	C4-C5-C6-O6
12	Ι	3	BMA	O5-C5-C6-O6
12	Ι	4	MAN	O5-C5-C6-O6
9	А	2	NAG	O5-C5-C6-O6
11	F	4	MAN	O5-C5-C6-O6
12	Ι	1	NAG	C4-C5-C6-O6
9	А	2	NAG	C4-C5-C6-O6
12	Ι	2	NAG	C4-C5-C6-O6
12	Ι	4	MAN	C4-C5-C6-O6
10	0	1	NAG	O5-C5-C6-O6
10	0	2	NAG	C4-C5-C6-O6
10	Κ	1	NAG	C4-C5-C6-O6
10	J	1	NAG	O5-C5-C6-O6
11	F	4	MAN	C4-C5-C6-O6
9	А	2	NAG	C8-C7-N2-C2
9	A	2	NAG	O7-C7-N2-C2
10	0	1	NAG	C8-C7-N2-C2
10	0	1	NAG	O7-C7-N2-C2

Mol	Chain	Res	Type	Atoms
13	N	1	NAG	C8-C7-N2-C2
13	Ν	1	NAG	O7-C7-N2-C2
13	Ν	1	NAG	O5-C5-C6-O6
13	Ν	4	MAN	O5-C5-C6-O6
13	Ν	1	NAG	C4-C5-C6-O6
10	J	1	NAG	C4-C5-C6-O6
11	F	3	BMA	O5-C5-C6-O6
13	Ν	4	MAN	C4-C5-C6-O6
12	Ι	3	BMA	C4-C5-C6-O6
11	F	5	MAN	C4-C5-C6-O6
9	А	5	MAN	O5-C5-C6-O6
10	С	2	NAG	C4-C5-C6-O6
11	F	5	MAN	O5-C5-C6-O6
10	С	2	NAG	O5-C5-C6-O6
10	М	1	NAG	O5-C5-C6-O6
10	J	2	NAG	C4-C5-C6-O6
10	J	2	NAG	O5-C5-C6-O6
13	Ν	2	NAG	C4-C5-C6-O6
13	Ν	2	NAG	O5-C5-C6-O6
9	А	2	NAG	C1-C2-N2-C7
13	Ν	1	NAG	C1-C2-N2-C7
9	А	2	NAG	C3-C2-N2-C7
13	Ν	1	NAG	C3-C2-N2-C7
9	А	5	MAN	C4-C5-C6-O6

Continued from previous page...

There are no ring outliers.

7 monomers are involved in 9 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
9	А	2	NAG	1	0
9	А	4	MAN	3	0
10	J	2	NAG	2	0
9	А	5	MAN	1	0
13	N	4	MAN	1	0
12	Ι	1	NAG	1	0
13	N	1	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

7 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles		les	
	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
14	NAG	G	614	4	14,14,15	0.29	0	17,19,21	0.51	0
14	NAG	В	702	1	14,14,15	0.33	0	17,19,21	0.44	0
14	NAG	В	701	1	14,14,15	0.27	0	$17,\!19,\!21$	0.58	0
14	NAG	G	637	4	14,14,15	0.27	0	$17,\!19,\!21$	0.52	0
14	NAG	G	615	4	14,14,15	0.78	1 (7%)	17,19,21	0.59	0
14	NAG	G	616	4	14,14,15	0.29	0	17,19,21	0.51	0
14	NAG	G	638	4	14,14,15	0.26	0	17,19,21	0.53	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
14	NAG	G	614	4	-	2/6/23/26	0/1/1/1
14	NAG	В	702	1	-	2/6/23/26	0/1/1/1
14	NAG	В	701	1	-	2/6/23/26	0/1/1/1
14	NAG	G	637	4	-	2/6/23/26	0/1/1/1
14	NAG	G	615	4	-	2/6/23/26	0/1/1/1
14	NAG	G	616	4	-	2/6/23/26	0/1/1/1
14	NAG	G	638	4	-	2/6/23/26	0/1/1/1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
14	G	615	NAG	C1-C2	2.71	1.56	1.52

There are no bond angle outliers.

There are no chirality outliers.

All (14) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
14	G	638	NAG	O5-C5-C6-O6
14	G	614	NAG	O5-C5-C6-O6
14	G	616	NAG	O5-C5-C6-O6
14	G	637	NAG	O5-C5-C6-O6
14	G	615	NAG	O5-C5-C6-O6
14	G	616	NAG	C4-C5-C6-O6
14	G	638	NAG	C4-C5-C6-O6

	v	1	1 0	
Mol	Chain	\mathbf{Res}	Type	Atoms
14	G	637	NAG	C4-C5-C6-O6
14	В	701	NAG	O5-C5-C6-O6
14	G	615	NAG	C4-C5-C6-O6
14	В	702	NAG	O5-C5-C6-O6
14	G	614	NAG	C4-C5-C6-O6
14	В	701	NAG	C4-C5-C6-O6
14	В	702	NAG	C4-C5-C6-O6

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSR	Z>2	2	$OWAB(Å^2)$	Q<0.9
1	В	127/153~(83%)	0.69	14 (11%)	12	9	8, 31, 61, 80	0
2	D	128/153~(83%)	2.62	83 (64%)	0	0	38, 83, 116, 127	0
3	E	110/130 (84%)	2.48	64 (58%)	0	0	42, 72, 104, 116	0
4	G	430/481 (89%)	0.67	50 (11%)	11	8	8, 26, 71, 109	0
5	Н	226/244~(92%)	1.62	81 (35%)	1	1	23, 61, 93, 105	0
6	L	210/217~(96%)	0.90	28 (13%)	8	6	22, 46, 68, 95	0
7	U	129/137~(94%)	2.91	98 (75%)	0	0	34, 85, 116, 132	0
8	V	101/117~(86%)	3.62	90 (89%)	0	0	64, 101, 118, 123	0
All	All	1461/1632 (89%)	1.56	508 (34%)	1	1	8, 52, 107, 132	0

Mol	Chain	Res	Type	RSRZ
3	Ε	68	TYR	9.4
3	Е	2	SER	8.1
8	V	2	ILE	8.0
2	D	10	THR	7.8
4	G	465	THR	7.1
4	G	505	VAL	6.9
2	D	18	VAL	6.8
7	U	100	ARG	6.7
8	V	20	THR	6.4
2	D	110	THR	6.3
2	D	91	PHE	6.3
3	Ε	8	ALA	6.3
7	U	61	TRP	6.2
8	V	76	SER	6.2
3	Е	99	GLY	6.1
7	U	40	ALA	6.1

All (508) RSRZ outliers are listed below:

	61	INJ

Mol	Chain	Res	Type	RSRZ
4	G	135	THR	6.0
8	V	1	ASP	6.0
7	Ū	31(C)	TRP	5.9
7	U	41	PRO	5.9
7	U	91	TYR	5.8
2	D	41	ALA	5.8
7	U	26	GLU	5.8
4	G	188	ASN	5.8
2	D	79	TYR	5.7
7	U	28	ASP	5.7
8	V	74	THR	5.6
8	V	99	GLY	5.6
8	V	4	MET	5.5
2	D	82	ILE	5.4
8	V	21	ILE	5.4
2	D	83	THR	5.3
7	U	27	ASP	5.3
8	V	47	LEU	5.3
8	V	30	GLY	5.2
4	G	466	GLU	5.2
2	D	89	THR	5.2
3	Е	106(A)	LEU	5.2
2	D	70	THR	5.1
2	D	45	PRO	5.0
8	V	19	VAL	5.0
5	Н	132	GLY	5.0
8	V	80	ALA	5.0
5	Н	136	LEU	5.0
3	Е	98	PHE	5.0
7	U	30	TYR	5.0
3	Е	69	TRP	4.9
2	D	80	MET	4.9
7	U	100(A)	SER	4.9
8	V	46	LEU	4.9
8	V	85	THR	4.9
7	U	$\overline{31(A)}$	PRO	4.9
2	D	12	THR	4.9
8	V	73	LEU	4.9
2	D	13	LYS	4.9
3	Е	41	GLY	4.8
8	V	55	GLU	4.8
8	V	39	LYS	4.8

Continued from previous page...MolChainResTypeRSRZ

7	U	31(B)	TYR	4.7
3	Е	11	VAL	4.7
4	G	358	ILE	4.7
2	D	82(C)	LEU	4.7
8	V	75	ILE	4.7
5	Н	208	LYS	4.7
8	V	42	LYS	4.7
7	U	62	TYR	4.6
7	U	82(C)	LEU	4.6
8	V	51	ALA	4.6
8	V	31	LYS	4.6
8	V	7	SER	4.5
8	V	78	LEU	4.5
8	V	105	ASP	4.5
7	U	44	GLN	4.5
7	U	3	GLN	4.5
8	V	71	PHE	4.5
7	U	12	ARG	4.5
3	Е	87	TYR	4.5
3	Е	106	VAL	4.5
8	V	72	SER	4.5
7	U	36	PHE	4.5
4	G	151	ARG	4.4
5	Н	187	LEU	4.4
8	V	11	LEU	4.4
1	В	663	LEU	4.4
7	U	45	LEU	4.4
6	L	68	GLY	4.4
8	V	77	SER	4.4
8	V	62	PHE	4.4
8	V	48	VAL	4.3
8	V	29	ILE	4.3
7	U	64	ASN	4.3
3	Е	76	SER	4.3
8	V	64	GLY	4.2
5	H	185	SER	4.2
6	L	100	GLY	4.2
7	U	84	SER	4.2
3	Е	23	CYS	4.2
8	V	37	GLN	4.2
8	V	17	ASP	4.1
7	U	18	VAL	4.1

Conti	nued fron	n previous	s page	
Mol	Chain	Res	Type	RSRZ
8	V	67	PHE	4.1
7	U	100(B)	GLU	4.1
2	D	84	SER	4.1
8	V	28	GLY	4.1
3	Е	80	PRO	4.1
2	D	109	LEU	4.1
4	G	195	ASN	4.1
5	Н	192	TYR	4.1
6	L	7	TYR	4.1
7	U	11	VAL	4.1
7	U	48	LEU	4.1
2	D	20	ILE	4.1
7	U	2	VAL	4.0
4	G	412	ASP	4.0
3	Е	96	CYS	4.0
4	G	458	GLY	4.0
2	D	42	GLY	4.0
2	D	82(B)	ASN	4.0
5	Н	73	THR	3.9
5	Н	29	ILE	3.9
8	V	18	ARG	3.9
7	U	112	SER	3.9
8	V	40	ALA	3.9
7	U	90	TYR	3.9
4	G	72	HIS	3.9
6	L	191	SER	3.9
7	U	109	VAL	3.9
8	V	13	ALA	3.9
2	D	108	LEU	3.9
8	V	79	GLN	3.9
4	G	69	TRP	3.9
7	U	31	SER	3.8
7	U	110	VAL	3.8
4	G	456	ARG	3.8
8	V	23	CYS	3.8
2	D	46	GLU	3.8
4	G	398	ASN	3.8
7	U	82(A)	LYS	3.8
8	V	88	CYS	3.8
8	V	59	PRO	3.8
8	V	38	GLN	3.8
8	V	65	SER	3.8

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	<i>paae</i>
0 0100010 0000	J. 01.0	proceed as	P ~ 9 0 · · · ·

Mol	Chain	Res	Type	RSRZ
3	Е	30	HIS	3.8
7	U	93	ALA	3.7
3	Е	75	ILE	3.7
4	G	359	ILE	3.7
2	D	8	GLY	3.7
6	L	184	MET	3.7
7	U	59	TYR	3.7
7	U	111	VAL	3.7
7	U	29	ASP	3.7
8	V	6	GLN	3.7
2	D	37	ILE	3.7
2	D	7	SER	3.7
3	Е	7	SER	3.7
2	D	92	CYS	3.7
5	Н	28	SER	3.7
4	G	211	GLU	3.6
7	U	31(E)	ASN	3.6
7	U	37	LEU	3.6
8	V	86	TYR	3.6
8	V	35	TRP	3.6
2	D	60	ALA	3.6
8	V	56	GLY	3.6
8	V	54	LEU	3.6
2	D	38	ARG	3.6
5	Н	100(O)	TYR	3.6
6	L	210	THR	3.6
2	D	77	ALA	3.6
2	D	5	VAL	3.6
5	Н	33	TYR	3.6
8	V	36	TYR	3.6
2	D	44	GLY	3.6
7	U	13	LYS	3.6
2	D	72	ASP	3.6
1	В	612	SER	3.5
7	U	25	ALA	3.5
5	Н	2	VAL	3.5
2	D	49	GLY	3.5
5	H	119	VAL	3.5
8	V	58	VAL	3.5
8	V	68	HIS	3.5
5	H	51	ILE	3.5
2	D	64	GLN	3.5

Mol	Chain	Res	Type	RSRZ
7	U	15	GLY	3.5
3	Е	42	ARG	3.5
3	Е	12	SER	3.5
6	L	67(A)	ILE	3.5
1	В	547	GLY	3.5
8	V	27	ARG	3.4
3	Е	40	PRO	3.4
7	U	60	ALA	3.4
7	U	5	VAL	3.4
3	Е	107	GLY	3.4
6	L	143	GLY	3.4
1	В	660	LEU	3.4
3	Е	35	TRP	3.4
6	L	199	GLU	3.4
7	U	10	ALA	3.4
4	G	397	SER	3.4
8	V	16	GLY	3.4
7	U	83	ARG	3.4
8	V	25	ALA	3.4
7	U	31(D)	VAL	3.4
5	Н	197	ASN	3.4
7	U	42	GLY	3.4
8	V	98	PHE	3.4
8	V	104	VAL	3.3
2	D	3	GLN	3.3
8	V	100	GLN	3.3
8	V	87	PHE	3.3
2	D	43	ARG	3.3
2	D	21	SER	3.3
3	Е	88	CYS	3.3
8	V	84	ALA	3.3
8	V	33	LEU	3.3
7	U	81	GLU	3.2
3	E	97	VAL	3.2
5	Н	204	LYS	3.2
8	V	101	GLY	3.2
2	D	68	ASN	3.2
5	Н	36	TRP	3.2
6	L	190	LYS	3.2
8	V	15	LEU	3.2
7	U	105	GLN	3.2
3	E	13	GLY	3.2

			<u>F</u> again	DODO
Mol	Chain	Res	Type	RSRZ
3	Е	62	PHE	3.2
8	V	10	SER	3.2
4	G	65	LYS	3.2
2	D	22	CYS	3.2
6	L	70	ARG	3.2
7	U	107	THR	3.2
8	V	63	SER	3.2
2	D	96	LEU	3.2
3	Е	43	ALA	3.2
5	Н	71	VAL	3.2
6	L	133	LEU	3.2
5	Н	202	ASN	3.1
3	Е	14	SER	3.1
4	G	152	GLY	3.1
2	D	85	ASP	3.1
2	D	71	THR	3.1
3	Е	46	LEU	3.1
7	U	16	ALA	3.1
5	Н	59	TYR	3.1
2	D	14	PRO	3.1
8	V	9	SER	3.1
5	Н	32	TYR	3.1
7	U	97	LYS	3.1
8	V	45	LYS	3.1
2	D	9	ALA	3.0
5	Н	98	GLY	3.0
8	V	41	GLY	3.0
5	Н	34	TRP	3.0
3	Е	78	LEU	3.0
2	D	61	PRO	3.0
3	Е	28	CYS	3.0
5	Н	181	THR	3.0
8	V	50	ASP	3.0
8	V	70	ASN	3.0
3	Е	16	GLY	3.0
6	L	20	SER	3.0
5	Н	48	ILE	3.0
5	Н	157	LEU	3.0
7	U	87	THR	3.0
5	Н	182	VAL	3.0
7	U	8	GLY	3.0
7	U	68	THR	2.9

Continued from previous page						
Mol	Chain	Res	Type	RSRZ		
4	G	78	ASP	2.9		
4	G	474	ASP	2.9		
2	D	39	GLN	2.9		
3	Е	6	GLN	2.9		
8	V	57	GLY	2.9		
2	D	16	SER	2.9		
3	Е	9	SER	2.9		
2	D	82(A)	ARG	2.9		
2	D	11	THR	2.9		
2	D	87	THR	2.9		
8	V	102	THR	2.9		
7	U	89	VAL	2.9		
4	G	411	ASN	2.9		
7	U	104	GLY	2.9		
1	В	648	GLU	2.9		
7	U	47	TRP	2.9		
6	L	49	TYR	2.9		
2	D	78	ALA	2.9		
8	V	32	ASP	2.9		
1	В	613	SER	2.9		
8	V	12	SER	2.9		
7	U	31(G)	ALA	2.9		
8	V	3	GLN	2.9		
7	U	108	PRO	2.9		
3	Е	27(C)	CYS	2.9		
5	Н	138	CYS	2.9		
2	D	63	PHE	2.8		
3	Е	57	GLY	2.8		
4	G	396	ILE	2.8		
4	G	504	ARG	2.8		
5	Н	13	LYS	2.8		
3	Е	59	SER	2.8		
7	U	7	SER	2.8		
5	Н	23	THR	2.8		
7	U	82	VAL	2.8		
4	G	431	GLY	2.8		
5	Н	18	LEU	2.8		
5	Н	206	ASP	2.8		
3	Е	3	VAL	2.8		
5	Н	196	VAL	2.8		
2	D	103	TRP	2.8		
5	Н	189	THR	2.8		
	1	1				

Mol	Chain	Res	Type	RSRZ
8	V	22	THR	2.8
2	D	65	ASP	2.8
3	Е	79	ARG	2.8
4	G	184	ILE	2.7
5	Н	58	ASN	2.7
1	В	518	VAL	2.7
7	U	17	SER	2.7
3	Е	38	TRP	2.7
8	V	97	THR	2.7
2	D	66	ARG	2.7
7	U	73	ARG	2.7
2	D	6	GLN	2.7
2	D	52	SER	2.7
5	Н	158	THR	2.7
8	V	8	PRO	2.7
8	V	14	SER	2.7
2	D	86	ASP	2.7
5	Н	31	ASN	2.7
8	V	89	GLN	2.7
7	U	24	PHE	2.7
7	U	82(B)	SER	2.7
2	D	50	TRP	2.7
7	U	58	ASN	2.7
5	Н	100(R)	VAL	2.7
1	В	568	LEU	2.7
7	U	80	LEU	2.7
3	Е	34	SER	2.7
4	G	360	ARG	2.7
5	Н	72	ASP	2.6
5	Н	199	LYS	2.6
7	U	20	VAL	2.6
3	Е	37	GLN	2.6
7	U	31(F)	PRO	2.6
7	U	43	GLN	2.6
5	Н	191	THR	2.6
7	U	98	ARG	2.6
2	D	99	ASP	2.6
4	G	282	LYS	2.6
2	D	1	GLN	2.6
3	Е	15	LEU	2.6
3	Е	39	PRO	2.6
1	В	636	SER	2.6

Mol	Chain	Res	Type	RSRZ
2	D	17	SER	2.6
5	Н	152	TRP	2.6
7	U	46	GLU	2.6
2	D	23	LYS	2.6
2	D	19	LYS	2.6
2	D	57	LYS	2.6
6	L	187	LYS	2.6
2	D	30	ASN	2.6
2	D	59	LEU	2.6
8	V	43	ALA	2.6
6	L	200	GLY	2.6
2	D	4	LEU	2.5
1	В	651	ASN	2.5
8	V	34	ASN	2.5
8	V	83	VAL	2.5
3	Е	47	ILE	2.5
5	Н	21	THR	2.5
3	Е	103	LYS	2.5
5	Н	184	SER	2.5
7	U	92	CYS	2.5
3	Е	86	TYR	2.5
5	Н	80	LEU	2.5
7	U	39	GLN	2.5
7	U	85	ASP	2.5
2	D	48	MET	2.5
4	G	347	LYS	2.5
4	G	32	GLU	2.5
7	U	4	LEU	2.5
2	D	67	VAL	2.5
3	Е	104	VAL	2.5
3	Е	82	ASP	2.5
7	U	78	ALA	2.5
3	Е	89	CYS	2.5
3	Е	27(B)	VAL	2.5
5	Н	69	ILE	2.5
1	В	647	GLU	2.4
4	G	500	ARG	2.4
5	Н	125	SER	2.4
7	U	38	ARG	2.4
7	U	79	PHE	2.4
2	D	35	ASN	2.4

2.4

29

3

Е

Mol	Chain	Res	Type	RSRZ
3	Е	27	ASN	2.4
4	G	457	ASP	2.4
4	G	371	VAL	2.4
5	Н	1	GLN	2.4
5	Н	52	SER	2.4
8	V	26	SER	2.4
3	Е	5	THR	2.4
5	Н	57	THR	2.4
7	U	63	LEU	2.4
8	V	81	GLU	2.4
8	V	103	LYS	2.4
5	Н	12	VAL	2.4
5	Н	209	VAL	2.4
2	D	51	ILE	2.4
2	D	62	ALA	2.4
7	U	95	ALA	2.4
3	Е	36	TYR	2.4
5	Н	92	CYS	2.4
5	Н	78	LEU	2.3
6	L	204	GLU	2.3
2	D	15	GLY	2.3
5	Н	188	GLY	2.3
8	V	66	GLY	2.3
1	В	637	ASN	2.3
3	Е	100	THR	2.3
5	Н	64	LYS	2.3
7	U	51	MET	2.3
2	D	105	GLN	2.3
5	Н	84	ALA	2.3
7	U	9	ALA	2.3
1	В	618	ASN	2.3
2	D	100(C)	THR	2.3
5	Н	148	VAL	2.3
2	D	88	GLY	2.3
4	G	232	LYS	2.3
5	Н	103	LYS	2.3
7	U	23	LYS	2.3
4	G	350	ARG	2.3
5	Н	55	GLU	2.3
5	Н	203	THR	2.3
6	L	110	PRO	2.3

2.3

14

7

U

			s page	
Mol	Chain	Res	Type	RSRZ
6	L	189	HIS	2.3
4	G	468	PHE	2.3
7	U	96	GLN	2.3
7	U	49	ALA	2.3
7	U	103	TRP	2.3
7	U	99	GLY	2.3
8	V	61	ARG	2.2
5	Н	50	TYR	2.2
6	L	67(B)	ASN	2.2
7	U	76	THR	2.2
5	Н	183	PRO	2.2
5	Н	3	GLN	2.2
5	Н	156	ALA	2.2
5	Н	35	SER	2.2
4	G	357	THR	2.2
4	G	280	ASN	2.2
5	Н	53	ASP	2.2
4	G	352	HIS	2.2
5	Н	77	GLN	2.2
5	Н	110	SER	2.2
8	V	44	PRO	2.2
5	Н	180	VAL	2.2
7	U	67	VAL	2.2
5	Н	68	ILE	2.2
5	Н	134	ALA	2.2
2	D	102	LEU	2.2
7	U	66	ARG	2.2
3	Е	77	ASP	2.2
1	В	548	ILE	2.2
4	G	235	GLY	2.2
2	D	36	TRP	2.1
5	Н	56	SER	2.1
5	Н	74	SER	2.1
4	G	82	GLN	2.1
6	L	126	LEU	2.1
7	U	69	ALA	2.1
7	Ū	106	GLY	2.1
2	D	81	GLU	2.1
5	H	121	PRO	2.1
3	E	70	SER	2.1
5	H	70	SER	2.1
0	11	10		4 •±

201SER2.1Continued on next page...

Mol	Chain	Res	Type	RSRZ
2	D	58	ASN	2.1
4	G	355	ASN	2.1
3	Е	19	VAL	2.1
4	G	353	PHE	2.1
7	U	100(D)	ALA	2.1
6	L	186	TRP	2.1
4	G	467	THR	2.1
6	L	188	MET	2.1
3	Е	72	TYR	2.1
6	L	67	ASP	2.1
2	D	93	ALA	2.1
4	G	71	THR	2.1
6	L	182	THR	2.1
3	Е	32	SER	2.1
5	Н	113	SER	2.1
2	D	29	PHE	2.1
4	G	79	PRO	2.0
3	Е	81	GLU	2.0
5	Н	24	VAL	2.0
5	Н	205	VAL	2.0
6	L	129	ASN	2.0
7	U	100(E)	TYR	2.0
4	G	366	GLY	2.0
4	G	240	PRO	2.0
6	L	111	LYS	2.0
5	Н	22	CYS	2.0
3	Е	21	ILE	2.0
4	G	36	VAL	2.0
4	G	281	ALA	2.0
5	Н	135	ALA	2.0

α \cdot \cdot \cdot	C		
Continued	trom	nremous	naae
Contracta	<i>J</i> ¹ <i>O</i> 110	proceeduo	pagem

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

SUGAR-RSR INFOmissingINFO

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
14	NAG	В	701	14/15	0.60	0.23	72,99,112,124	0
14	NAG	G	616	14/15	0.68	0.20	$66,\!88,\!101,\!107$	0
14	NAG	G	614	14/15	0.74	0.17	21,55,84,89	0
14	NAG	G	615	14/15	0.79	0.20	37,60,79,82	0
14	NAG	В	702	14/15	0.83	0.19	78,92,101,102	0
14	NAG	G	637	14/15	0.88	0.14	36,47,59,63	0
14	NAG	G	638	14/15	0.92	0.11	36,42,51,66	0

6.5 Other polymers (i)

There are no such residues in this entry.

